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1st Editorial Decision 03 May 2017 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the four referees who agreed to evaluate your study. As you will see below, the reviewers 
appreciate that the presented approach seems interesting and potentially useful for the scientific 
community. However, they raise a number of concerns, which should be carefully addressed in a 
revision of the manuscript.  
 
The reviewers' recommendations are rather clear so I think that there is no need to repeat all the 
points listed below. A particular issue that needs to be addressed refers to the sensitivity of the 
approach to specific wording, since this seems to represent a significant limitation. Moreover, the 
reviewers recommend extending the discussion on the potential limitations of the approach, how 
generalizable it is to other types of biological networks and the degree of expert knowledge required 
to use the approach.  
 
 
--------------------------------------------------------  
REVIEWER REPORTS 
 
 
 
Reviewer #1:  
 
The manuscript by Gyori and colleagues 'From word models to executable models...' addresses the 
problem of developing mechanistic dynamic models of cell signaling with increased automation and 
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reduced technical barriers, and it proposes an approach based on natural language processing (NLP) 
for this purpose. Specifically, the INDRA software system combines: (i) existing NLP systems 
tailored to the identification of biological mechanisms from text (statements); (ii) mapping of 
interpreted text results and other information sources such as BioPAX and BEL to an internal 
representation of mechanisms (template-based Statements); and (iii) assembly of executable 
dynamic models of different type (e.g., ODE-based or Boolean) using policies for the specification 
of all required details on model granularity. Three examples from cell signaling of increasing 
complexity are presented to demonstrate model assembly from simple (manually written) textual 
statements, illustrating, for example, simple ways of augmenting incomplete pathway information 
(p53 example), and using INDRA statements for collaborative curation of pathway knowledge (Ras 
example).  
 
The manuscript describes a novel approach for model construction in systems biology by recruiting 
NLP methods to the field, which has the potential of facilitating model construction as well as 
communication on models without need for deep technical capabilities. The core methodological 
contributions are the internal representation of mechanisms of cell signaling via templates 
(statements), which interface to NLP and databases, and the assembly policies for interfacing to 
existing rule-based modeling (and similar) systems. The approach is technically sound, with overall 
consistent evaluation of the methods (e.g., regarding wording restrictions on text processing; but see 
qualifications below). The example studies recapitulate known biology (p53 and Ras examples), but 
they also provide hypotheses on novel mechanisms (melanoma MAPK example). Finally, 
limitations of the current system, in particular regarding model construction from direct parsing of 
literature or of databases, appear adequately discussed.  
 
Overall, the proposed system and approach are clearly novel and of potentially wider use (as 
alternatives to graphical or formal modeling language-based systems that currently exist) for 
mechanistic model development in systems biology. The examples demonstrate ease of model 
development for cell signaling. However, the approach might not generalize to the extent suggested 
in the manuscript, as discussed below.  
 
Major comments:  
 
(i) INDRA Statements are the key concept of the approach, serving as an intermediate representation 
(without additions or assumptions, claimed in the manuscript). The Statement templates and their 
structure appear, however, very tailor-made for certain aspects of cell signaling (e.g., the summary 
in Fig. S2 contains very specific classes such as RasGEF and RasGAP), and there is a risk that the 
design will not sufficiently generalize to other types of biological networks. Given standard 
ontologies and community standards for network representations (e.g., SBO and BioPAX), the 
definitions of templates require more justification and precision, in particular regarding the formal 
mapping between INDRA and standard classes (which should be coded in the Processor modules).  
 
(ii) Similarly, in terms of generalization and compatibility with existing systems, it is advisable to 
clarify relations to BioPAX and BEL, and give specific reasons for why automated extraction 
(instead of manual curation of statements after database searches already implemented in INDRA) 
fails or is limited. For example, statements such as p.25 'Perhaps unexpectedly, constructing 
executable models from pathway databases ...' appear to general and they may rely on outdated 
references. In particular, comments on how specific processors need to be, for different (alternative) 
inputs, and to what extent processors are extensible (in contrast to the need to develop specific 
processors for each potential data source) could clarify these points.  
 
(iii) Another aspect that warrant further discussion regards transparency of the INDRA system, 
especially concerning debugging. For example, how can users distinguish between cases of correct 
and incorrect processing of word models as in Fig. 4D? Does the INDRA system support textual or 
(ideally, as in Fig. 2 examples) graphical output at the statement level? At which levels are errors 
generated for word statements that cannot be processed, or can be processed only partially?  
 
(iv) On usability, the manuscript emphasizes ease of communication on models and limited 
technical challenges for their construction. However, for the p53 and MAPK examples, completion 
or modification of models to represent biological phenomena as discussed in the text requires basic 
expertise in systems dynamics / modeling (e.g., identification of missing reactions, association of 
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positive feedback associated with time delay) that are not commonly found among 'traditional' 
biologists. In this view, statements such as p.16 'Introducing alternative assumptions and 
mechanisms using natural language is straightforward and can be accomplished by individuals with 
little or no technical expertise.' appear exaggerated and a more detailed discussion of technical 
requirements on the user for model implementation vs. analysis is warranted.  
 
(v) Finally, among the examples of INDRA usage, the example of Ras signaling should be expanded 
with additional evidence. A 'visually comparable' pathway map represents as a rather weak 
argument, given that Ras signaling was used more rigorously in the original DRUM publication 
(Allen, 2015); it could also be revealing to compare INDRA output (formally) with standardized 
pathway maps, such as those published in SBGN notation for several mammalian signaling 
pathways. In addition, while the Boolean simulation for Ras demonstrates a key concept of INDRA 
(assembly into models of different type), the discussed simulation represent a very simple case study 
that could be omitted.  
 
Minor comments:  
 
(i) Title, abstract and general: The term 'word models' is not defined until late in the introduction; a 
definition in the abstract would be helpful.  
 
(ii) Legend to Fig. 1C: '... creates [an] Extraction Knowledge ...'.  
 
(iii) The introduction provides verbal arguments on the conceptual differences between INDRA and 
existing systems, which are well summarized in Fig. 8 and associated text. To better convey the 
concepts behind INDRA in a non-technical way it may be advisable to move this figure and (parts of 
the) text to the introduction.  
 
(iv) More recent developments towards community standards in systems biology should be 
referenced, for example, for whole-cell modeling (IEEE TRANSACTIONS ON BIOMEDICAL 
ENGINEERING, VOL. 63, NO. 10, OCTOBER 2016).  
 
 
 
Reviewer #2:  
 
The manuscript by Peter Sorger and colleagues describes a set of algorithms and semantics (or as 
they call it an approach) where signaling models described in human readable text are translated in 
computable signaling models (e.g. using ODEs) that allow simulation of the dynamics of those 
networks. The article first describes the steps of the approach and then illustrates the use on building 
models for p53 and EGFR/RAS/RAF signaling. The article is well written and well understandable.  
As far as I see the approach seems to work (though there is no benchmark by which one can really 
measure this), but the individual steps are not really compared to the state of the art. When does the 
natural language processing fail? How complicated can these texts be?  
 
My main concern is that I don't really see that the approach is a major step forward in making 
signaling models.  
 
The authors sell it as it is the way so that also laymen can generate complex models, but I actually 
see it the other way around. The models are generated basically by a black box, and very similar 
statements can lead to very different models, especially given the combinatorial complexity, and the 
authors show one example of such combinatorial explosion.  
The major advantage of computational models is (at least that is my view of it) that these are very 
explicit about the modeling assumption. This benefit is gone with this approach, so that other (more 
graphical ways) would be more explicit, such as SBGN editors or other editors.  
 
The other application where I could see this approach being useful would be to extract crude models 
from full text. However, for this the text mining seems to be rather limited in potential.  
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Reviewer #3:  
 
Gyori, Bachman, and colleagues describe a new framework for building computational models of 
molecular systems, implemented through the software package INDRA, in which natural language 
commonly used to describe molecular interactions and mechanisms is parsed and converted into 
executable models with well-defined structures. The approach involves multiple layers of processing 
and incorporates multiple external resources - both to carry out the processing steps as well as to 
draw on existing knowledge from biological databases. INDRA is applied to three test cases of 
human signaling networks that represent varying levels of complexity as well as different modeling 
purposes. These examples serve to demonstrate the software's utility and limitations.  
 
The study is timely because of a general consensus in the biomedical community about the disparity 
between data and knowledge. It also tackles the challenging task of natural language processing 
(though the functionality of the method is somewhat limited to very specific types of grammatical 
forms used to describe biological systems). As a piece of computer software, INDRA is well 
described, documented, and conceptually easy to follow. It is likely to be a valuable contribution to 
the systems biology community. I did not test the software as part of this review but trust that, like 
most open-source resources, the greatest positive impact on its maturation as a tool will come from 
the public.  
My comments are intended to sharpen the paper, mainly by drawing out precisely where INDRA 
belongs as a tool in the grand scheme of deriving quantitative models from the vast sum of 
experimental knowledge available to us.  
 
Major comments:  
 
1. Through the exercise of deciphering word models, the study highlights the crux of model 
building: the encoding of imprecise of often vague ideas about biological mechanism into 
unambiguous mathematical form. For me, the greatest take-away from the paper was that, even with 
a tool that understands spoken language, building a molecular model is an iterative dialogue 
between human and computer in which common ground is achieved by balancing model purpose 
with the requirement for discrete structures. This principle becomes clear through all three pathway 
examples, which each required some degree of expert knowledge in order to achieve a specific 
modeling purpose.  
 
2. It seems that INDRA ought to be able to handle assembly of statements in which two mechanisms 
are embedded. For example, we might say that "EGFR activates SOS" and that "EGFR activates 
SHC". Both statements are true. The first statement is correct but has not defined the intermediate 
(SHC) that mediates the activation of SOS by EGFR. Similarly, "MEK1 phosphorylates ERK2" and 
"MEK1 phosphorylates ERK2 at threonine 185" should be merged into a common mechanism that 
reduces to the second statement. Does INDRA allow for these types of overlapping word models to 
be supplied and reconciled?  
 
3. Supposing INDRA may be applied to large collections of natural language, how would it handle 
apparently contradictory information (e.g., X activates Z; X inhibits Z)". One could imagine a 
scenario in which both statements are true (e.g., an incoherent feedforward loop in which X 
activates Z directly but inhibits Z through intermediate Y). It may be that this capability of 
assembling language into an executable model is beyond the scope of the current implementation of 
INDRA, which is aimed primarily at providing a modeling interface that begins with natural 
language. However, the capability of INDRA to establish equivalence between multiple aliases of 
the same biological entities (described on p. 16) leads me to believe that it is intended (at least 
eventually) for application to large databases of mechanistic information in which contradictory 
mechanisms are almost certain to exist. I would like to see a more precise description of the 
context/limitations/eventual utility of INDRA.  
 
4. An unexpected consequence of INDRA is that it may serve a reverse and complementary 
function: to improve the precision of how we speak about biological mechanisms. The example of 
the problematic phrase "ATM activates itself" highlights how a tool like INDRA could be useful in 
this regard.  
 
Minor comments:  
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1. The statement "...there is little evidence that creation of new word models is being routinely 
supplemented by formal modeling approaches" (p. 2) is unclear at this point in the manuscript. I 
think it becomes clear in the Results section that Assembly can be of great benefit to improving the 
precision of word models and to refining and challenging existing statements about biological 
mechanism.  
 
2. The acronym SBML is used before it is defined (p. 2).  
 
3. The acronym UML is used before it is defined (p. 8).  
 
4. EKB is defined in the glossary on p. 5 but then redefined on pp. 8 and 10.  
 
5. In general, the paper is very acronym-rich, but I don't see any way around this.  
 
6. It would be useful for many readers to have a reference associated with the sentence that ends 
"...reducing the identifiability of the model." (p. 14).  
 
 
 
Reviewer #4:  
 
Summary  
 
- Describe your understanding of the story  
The authors describe a novel computational approach to bridge the gap between natural language 
and executable models. The paper describes how events returned from natural language parsers can 
be processed into "statements" which capture biological processes. The process to assemble these 
statements into existing modeling formats suitable for solving with existing software is also 
described.  
 
- What are the key conclusions: specific findings and concepts  
• Executable models can be generated from natural language  
• Executable models generated in this way qualitatively recreate expected behavior  
• Natural language processed with the tool presented here is an efficient collaborative tool to 
improve collaboration between experts in a biological domain with experts in computational 
modeling.  
 
- What were the methodology and model system used in this study  
• A novel software package (INDRA) was developed in python.  
• An existing natural language processes (TRIPS) was leveraged along with interfaces to existing 
databases such as PAX and the existing modeling framework PySB was used for execution.  
• Three biological domains were analyzed by constructing natural language statements sand 
compared the quality of simulated outputs to expected results.  
 
General remarks  
 
- Are you convinced of the key conclusions?  
The authors successfully demonstrate that executable models can reliably generated from natural 
language statements using their newly developed tool.  
They also successfully show -qualitatively- that expected behavior can be recapitulated by models 
generated from natural language.  
The reliability of the approach and potential of natural language models in enabling collaboration is 
somewhat convincing. However, the examples in the study failed to produce expected results with 
initial natural language descriptions and iterative adjusting of phraseology and re-running the 
pipeline was required to obtain the desired result. The sensitivity of the approach to specific wording 
limits the use of the technique to those with some knowledge of the conversion process as those 
unfamiliar with underlying data structures will quickly resort to a trial and error approach to 
rewording the descriptions.  
Inevitable combinatorial complexity (acknowledged by the authors), combined with the author's 
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choice of reaction scheme (two-step), generated models that were unnecessarily complex. This 
complexity hampers further modeling and parameterization required to make predictive models and 
would also be a barrier to the use of the described technique as a collaborative tool.  
 
- Place the work in its context.  
Most progress in the area of enabling technologies/software for computational modeling has been 
focused on software environments for the construction of pathway diagrams and the creation of 
models from these diagrams (Cell Designer, COPASI, SimBiology). Diagrammatic representations 
have been widely and successfully used as tools for collaboration between biological and 
computational experts.  
The approach described here provides an alternative to diagrammatic formalisms. This study 
represents an important component in a long-term goal of systems biology, which is mining 
biological literature in a manner amenable to theoretical analysis. When combined with automated 
literature text-mining and existing parameter estimation techniques the work presented here will 
presumably provide an important component of a complete automated model construction pipeline 
able to construct executable models for any biological domain.  
 
- What is the nature of the advance (conceptual, technical, clinical)?  
The work describes a technical advance in converting parsed text statements into executable 
modeling.  
 
- How significant is the advance compared to previous knowledge?  
In isolation in its current form the study represents a moderate advance, however if issues of 
complexity explosion and sensitivity to wording are improved then the tool presented here will be an 
important advance enabling widely-useful, automated, model construction and analysis from 
scientific literature.  
 
- What audience will be interested in this study?  
The study will be of interest to systems biologists working on model construction and dynamical 
pathway analysis.  
 
Major points  
 
-Specific criticisms related to key conclusions  
The sensitivity to specific wording generating qualitatively distinct behavior (demonstrated by the 
ATM trans-phosphorylation example) seems to be a significant limitation in the applicability of the 
approach. While the study claims to enable model construction by individuals with little or no 
technical expertise, significant knowledge of which phrasing changes can generate significantly 
different dynamical systems is required to successfully use the technique.  
Most successful model-driven studies utilize elegant models containing ~1 reaction for each 
biochemically significant process. The "word model" format here is amenable to such elegant model 
construction, however, in its current implementation that is not achieved.  
The authors argue, somewhat unconvincingly, that natural language provides a superior 
collaborative framework to traditional wiring diagrams. Many of the weaknesses of diagrammatic 
representations are shared by natural language descriptions of processes. Vague wording inhibit 
quantitative analysis in the same way vague diagrammatic representations do. Large lists of plain-
text statements become difficult to understand with scale in the same way diagrammatic 
representations do. The authors even use an "informal" diagram to construct a word model, a step 
that requires similar effort and expertise as converting an "informal" diagram into a mathematically 
complete notation such as SBGN in widely used software.  
 
-Specify experiments or analyses required to demonstrate the conclusions  
Sensitivity to wording should be addressed. Rather than allowing "ATM trans-phosphorylation" to 
silently generate significantly different models to "Active ATM phosphorylates ATM" a step in 
which ambiguities such as these are identified and clarified when INDRA is run would greatly 
improve the approach.  
Combinatorial explosion must be addressed. Michaelis-Menten kinetics should be included in 
addition to the 1- and 2-process mechanisms to enable construction of elegant models that include 
saturating kinetics. If the number of generated ODEs is similar to the number of phrases used as 
input the technique will be greatly improved.  
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The study's focus on replacing diagramtic representations should be adjusted to instead focus on the 
important role of INDRA in forming part of a highly enabling, automated pipeline from literature to 
automatically generated and parameterized models.  
Where appropriate the specific sections of the manuscript of most relevance to answering these 
concerns are highlighted below.  
 
Minor points  
 
-Easily addressable points  
Introduction.  
Paragraph 1:  
Include modeling of ERK, P53, NFkB and other signaling networks into examples of mechanisms 
elucidated by computational modeling.  
Is it possible to generated some estimate of how many papers contain formal language of high 
enough quality to enable "word model" construction and don't contain a diagram in a formal 
notation enabling model construction.  
Paragraph 2:  
Add Copasi (Hoops et al 2006) and BioModels database (Juty et al. 2015) to list of tools for 
improving mechanistic modeling.  
Paragraph 5:  
Natural language suffers the same issues of differences in style/syntax between authors as 
differences in diagrammatic notation. There are many phrases that could represent the same arrow 
on a diagram. While paragraph 3 dismisses diagrams as struggling to deal with large complexity and 
large scope, how natural language descriptions overcomes this is unsatisfactorily described.  
"sophisticated NLP algorithms" is vague phraseology that should be replaced with a better 
description of the algorithmic innovation or novel application of existing specified algorithms.  
Results  
Page 13:  
The "one-step policy" in which an enzyme-mediated reaction is represented by a single process does 
not necessarily ignore enzyme saturation and require only a single parameter, as this single step 
process could be represented with Michaelis-Menten (MM) kinetics, which is supported by PySB 
and uses 2 parameters. The one step policy is valid in excess enzyme regimes. The one step policy 
with MM kinetics extends the one-step policy to include enzyme saturating regimes. This is the 
most widely used formalism in model building and is currently ignored. The 2-step policy is only 
required if MM assumptions are not met. The addition of MM kinetics may prevent a model with 28 
PySB rules exploding into a model with 99 differential equations, and a model with 34 rules 
exploding into 275 ODES, while still capturing important kinetic characteristics.  
Page 15:  
In reference to the constitutive negative regulation of Mdm2 and Wip1 clarity should be provided as 
to which parameters in the ODE model of Batchelor et al, 2011 were missing from the diagram. I 
am unable to locate p14ARF or HIPK2 inhibition in the paper, supplement or MATLAB files of 
Batchelor et al. If other studies were used for the addition of this mechanism then that should be 
clarified as it seems the model introduced here required additional mechanism to recreate the same 
behavior seen in Batchelor et al. 2011.  
Time delay is added using a positive feedback however this limits the applicability of the approach 
as positive feedback does not exist in all systems with delay. INDRA should either be extended to 
accept word models that include "X activates Y with a delay", or this limitation should be explicit.  
"Oscillation was robust to changes in kinetic parameters" may be confusing as properties such as 
amplitude and frequency are highly parameter sensitive. Suggest: "The presence of oscillations was 
robust to changes".  
While it is clear that essential reactions for the dynamical system were omitted from diagrams they 
were also omitted from the text and had to be manually added. This is not an argument for word-
models over diagramtic representations as both were insufficient from a single study. Please clarify.  
The text describes the manual construction of word models from diagrams and other studies and 
then states that "machine-assembled" word models are useful. Please clarify that these are manually 
constructed word models that are then machine-assembled into an executable form.  
Page 16:  
Biologically descriptive phrases such as ATM trans-phosphorylates itself should be added to the 
tested phrases here.  
Page 21:  
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While the combinatorial complexity problem is addressed here the previous paragraph describes 
INDRA as a starting point for modeling. Models of this complexity are poor starting points and this 
must be should be addressed before IDRA can be considered a recommending starting point for 
modeling over diagrammatic inputs like symbiology or user-friendly packages such as COPASI. 
The time investment required to learn software such as COPASI/SimBiology/CellDesigner is not far 
greater than the learning required to understand the impact of phraseology on dynamics and in the 
corrent format they generate more elegant models as "starting points". Either address complexity of 
generated models as described above or clarify the expected use of the large models generated, I 
would not recommend them as a starting point for model construction but perhaps as tools to 
identify knowledge gaps, generate diagrams and target manual model construction. Intead highlight 
the importance of this approach in enabling automated, text-mined, model construction from the 
literature here.  
Page 25:  
The following sentence is inaccurate: "molecular species are directly instantiated as variables and 
related to each other using one or more differential equations for each mass action reaction". Rather 
in dynamical systems modeling molecular species are each represented by a differential equation 
and the terms of the differential equations are determined by the reactions.  
Page 27:  
Cytoscape offers importing from various databases and outputting SBML among other formats and 
should be mentioned here (Cline et al 2007 Nature Protocols). Cell Designer also enables input from 
a number of file formats including BIOPAX, simulation within Cell Designer and export as SBGN 
(Funahashi et al 2003) including plugins such as SBMLsqueezer which enable generation of rate 
equations from diagrams that can be created by easily without mathematical skills. Include these 
here.  
 
-Presentation and style  
Good  
 
-Trivial mistakes  
Figure 4: Rule 1 of one step policy uses 'kc' parameter in diagram and 'kf' parameter in code. 
 
 
1st Revision - authors' response 14 September 2017 

 
 
  



 

 

 
Response to General Comments Raised by Multiple Reviewers 
 
On the issue of the robustness, transparency, and accessibility of the natural language modeling 
approach, reviewers raised multiple interrelated concerns, addressed in detail below.  
 
GC1. Robustness of the NLP itself. 
 
INDRA makes use of two independent NLP systems, TRIPS/DRUM (Allen et al. 2015) and REACH 
(Valenzuela-Escarcega et al. 2015). Notably, both of these systems can be, and currently are, used 
to extract mechanisms not only from human-curated text but also from the scientific literature. The 
performance of the TRIPS system (our primary focus in this paper) and ten other NLP systems was 
formally evaluated by a third party (MITRE Corporation) for its performance in extracting 
mechanisms from passages in the scientific literature (Figures 8 and 9 of Allen et al., 2015). The 
performance of TRIPS compared favorably to that of human curators in terms of precision and 
recall (NB: the authors of our manuscript include members of one of the two teams of human 
curators used as a reference in the NLP evaluation exercise; Figure 9 of Allen et al. 2015). Both the 
TRIPS and REACH NLP systems are available open-source, and have been subjected to continuous 
improvement over a period of several years via user feedback. 
 
For the approach described in this paper, in which a human uses the software system to extract 
mechanisms from curated declarative text, a similar evaluation of NLP performance alone is difficult 
because a human quickly adapts to the existing capabilities of the system. The most meaningful 
evaluation of the joint human-machine system would therefore involve evaluation of human 
performance on a modeling task both with and without machine assistance, a study we have not 
yet undertaken. It is also not clear what the criterion should be: efficiency versus precision in 
model assembly, for example. 
 
Within the scope of this study, we have attempted to qualitatively illustrate robustness by exploring 
alternative phrasings for statements such as “Wip1 inactivates ATM” (Figure 4D). We show that 
eight different phrasings result in extraction of the same mechanism and assembly of identical 
models; among three phrasings that do not result in successful extraction, two involve grammatical 
or spelling errors (that humans but not machines can overcome) and only one (“Wip1 makes ATM 
inactive”) is syntactically valid. As biological modelers ourselves, we have found the TRIPS system, 
though imperfect, to be quite robust for the purposes described in this paper; we also invite the 
reviewers to experiment directly with the TRIPS/DRUM parser at 
http://trips.ihmc.us/parser/cgi/drum. 
 
GC2. Role of wording in determining mechanisms. 
On the issue of the sensitivity of the approach to specific wording, Reviewer 2 pointed to the fact 
that “similar statements can lead to very different models” and Reviewer 4 pointed to “iterative 
adjusting of phraseology,” in particular the distinction between “ATM phosphorylates itself” 
(autophosphorylation in cis) and “ATM phosphorylates ATM” (autophosphorylation in trans). We 
believe that these concerns reflect a misinterpretation of our work and that sensitivity to these 
differences in phrasing is a feature rather than a bug of the system. We have extensively re-written 
the relevant section of the manuscript to make this point clear (pages 17 and 18).  

 



 

 

One of the primary virtues of formal computational models is that they allow the assessment of the 
impact of assumptions on system behavior; this often uncovers innocuous assumptions that have a 
major impact. The sensitivity of models on assumptions is true whether a model is constructed 
from sets of differential equations, interaction rules, or sentences. Constructing models using 
natural language highlights the fact that the verbal descriptions constituting the foundation of most 
knowledge about biochemical mechanisms (e.g. in reviews or textbooks) can be unexpectedly 
ambiguous or inaccurate and can have dramatic effects on model behavior.  As a simple example, 
consider a model built from the three mechanistic assertions “A binds B; B binds C; C binds A.” 
This leads not only to assembly of an anticipated A-B-C heterotrimer but also an unlimited number 
of polymers of the form A-B-C-A-B-C-A, etc. This is the result of the fact that the mechanistic 
information contained in the assertions does not constrain the system to the assembly of trimers, 
and is an illustration of combinatorial complexity. Depending on the context of the modeling study, 
the appearance of polymers could represent a meaningful new biological hypothesis or merely an 
unintended consequence of insufficiently explicit biochemical assertions (which could then be 
clarified). 

 
We do not claim that the use of natural language for modeling absolves a modeler of precisely 
defining a mechanism. In this sense, we agree with Reviewer 2 that “vague wording inhibit[s] 
quantitative analysis in the same way vague diagrammatic representations do.” Indeed, one of our 
goals (illustrated most clearly in the case of the p53 models) is to provide a means by which word 
models, diagrams and computational models can be precisely aligned and ambiguity avoided. As 
Reviewer 3 correctly notes, modeling with natural language highlights the ambiguities implicit in 
verbal descriptions, with the potential “unexpected consequence” of improving “the precision of 
how we speak about biological mechanisms.” A simple example would be “MEK phosphorylates 
ERK” versus “Active MEK phosphorylates ERK”. 

 
Reviewer 2 points out that “the major advantage of computational models is…that these are explicit 
about the modeling assumptions.” This is only partly true. A formal model does make mechanistic 
assumptions explicit—but only because a human modeler has already resolved ambiguities 
inherent in knowledge sources (which include domain experts and the scientific literature in the 
form of verbal assertions). In this case, the conversion of high-level mechanistic knowledge into a 
formal representation occurs only in the mind of the modeler and is subject to (generally 
undocumented) modeling practices, conventions, and biases (see also Figure 8B in our 
manuscript). In INDRA, any ambiguities in the natural language input are resolved during the 
specification of explicit policies (Figure 4). Moreover, intermediate stages in model construction 
(such as INDRA Statements) and the final formal model resulting from automated assembly can be 
inspected in multiple formats (including SBML and, with a recent extension, SBGN), making 
assembly as transparent as any existing process involving humans alone. 

 
Formal models are often accompanied by informal descriptions or diagrams summarizing the model 
for non-experts, but the underlying mechanistic details, which can be highly consequential for 
model behavior, are usually absent from such informal summaries and thus hidden from readers. It 
is precisely this point that we aimed to make with the p53 modeling example (Figure 5): namely 
that an informal description of the p53 network and its dynamics (in this case a diagram) was an 
incomplete representation of the underlying formal assumptions. On the other hand, the full 
natural language model, (along with selected assembly policies as in Figure 4), is a fully self-
contained description of the assumptions needed to generate p53 oscillations and pulses.  
 



 

 

In conclusion, we are in broad agreement with the reviewer’s point of view except that we believe 
we have demonstrated that INDRA serves to resolve ambiguities that already exist in natural 
language. We have modified the text extensively to make this point (pages 17 and 18). 
 
GC3. Transparency of the parsing and assembly process. 
For the reasons outlined in GC2 above, we believe that for many readers of modeling studies, 
natural language modeling represents a more, rather than less, transparent approach. This is 
because assumptions and policies are transparent and explicit, and assembled models are 
automatically associated with semantic annotations. For non-experts, computational models are 
often highly inaccessible and natural language is one way of breaking down the barrier.  
 
We acknowledge however, that for experienced model builders unfamiliar with rule-based modeling 
and INDRA, our approach might be less transparent than modeling directly in a formal language. 
To address this issue, we have enhanced INDRA to support alternative representation formats for 
Statements (i.e., textual and graphical) to make clear how specific phrases are converted into 
Statements and subsequently assembled into models. We highlight the new features of the system 
in the revised text and in two new interactive iPython notebooks attached as part of the Appendix. 
In the first iPython notebook, we study in detail two sentences highlighted by the reviewers 
(“Active ATM phosphorylates itself” and “Active ATM phosphorylates another ATM molecule”) and 
show how inspection of the underlying Statements makes clear the difference in mechanism 
resulting from parsing the two phrases.  
 
Specifically, the first sentence generates an Autophosphorylation INDRA Statement which is 
displayed as Autophosphorylation(ATM(activity: True)), whereas the second sentence yields 
Phosphorylation(ATM(activity: True), ATM()). The hierarchical structure of these statements can 
be inspected graphically using newly developed tools. For example, using draw_stmt_graph, the 
Phosphorylation statement resulting from the second sentence is displayed as in Figure 1. The 
iPython notebook also includes examples of the same INDRA Statements in a human-readable and 
editable JSON format that allows specific fields to be inspected. 

 
Figure 1: Graphical representation of a Phosphorylation Statement 

 
 



 

 

The other issue raised by the reviewers with respect to transparency of the modeling process with 
INDRA concerns the final reaction model produced by assembly. In the case of the ATM example, 
the supplementary iPython notebook highlights the ability to interactively inspect the monomers, 
rules and annotations associated with the assembled PySB models. In the case of the 
Autophosphorylation Statement, the assembled model is seen to contain a first-order rule involving 
a single ATM molecule,  
 

ATM(activity='active', phospho='u') >> ATM(activity='active', phospho='p') 
 

whereas the model with the Phosphorylation Statement clearly contains a bimolecular reaction rule 
involving distinct molecules: 
 

ATM(activity='active') + ATM(phospho='u') >>  
ATM(activity='active') + ATM(phospho='p'). 

 
Unexpected combinatorial complexity of the reaction networks produced by INDRA was a particular 
concern of reviewers. As discussed in GC2 above, in general we believe that combinatorial 
complexity in reactions can and should be addressed through iterative refinement of mechanistic 
assertions, or the choice of suitable policies. A prerequisite for such iterative refinement is the 
ability to inspect the reaction model to identify the source of unexpected combinatorial explosions. 
In a second accompanying iPython notebook, we use a simplified example drawn from the BRAF 
model discussed in the paper (MEMI 1.2) to show how species and reactions engendered by a 
particular set of assumptions can be inspected interactively. Specifically, we show how assembly of 
a model from natural language using a two-step policy leads to a number of unrealistic species, 
including a complex with vemurafenib, RAF, MEK, and ERK simultaneously bound. We show how 
refining the language (e.g., “RAF not bound to Vemurafenib phosphorylates MEK”) cuts down on 
combinatorial complexity. Responding to the concerns voiced by Reviewer 4, we also show how the 
use of a one-step Michaelis-Menten policy (which we have newly implemented in the revised 
manuscript) can further reduce the complexity of the model.  
 
GC4. Generalizability to other types of biological networks 
An acknowledged limitation of our original submission was that INDRA Statements lacked the 
ability to represent general chemical conversions, since it focused on specific types of conversions 
relevant to signal transduction (e.g., post-translational modifications and GEF/GAP relationships). 
To address this issue, we have created a Conversion Statement to represent reactions where one 
or more reactants are converted into one or more products, with or without an enzymatic 
controller. This extension, along with the associated processor and model assembly procedures, 
now allows us to capture a significant fraction of all metabolic reactions. 
 
To evaluate the generalizability of the INDRA Statement representation and the procedures for 
extracting Statements from BioPAX and BEL, we queried Pathway Commons and the BEL large 
corpus for mechanisms in the neighborhoods of 15 genes and 5 metabolites across the categories 
of signaling, transcriptional regulation, and metabolism. For each neighborhood, we quantified the 
fraction of the original set of mechanisms captured as INDRA Statements. In the case of BEL we 
determined the fraction of BEL Statements (in the original neighborhood) for which a corresponding 
INDRA Statement could be extracted; in the case of Pathway Commons and BioPAX we determined 
the fraction of controlled BiochemicalReactions or TemplateReactions (which are used to represent 
transcriptional regulation) that could be extracted as INDRA Statements. Table 1, shown below, 



 

 

shows coverage statistics for genes and metabolites involved in metabolism, both before (-) and 
after (+) the addition of the Conversion Statement class. We added a new Appendix Table 1 to the 
revised manuscript which shows coverage statistics for all 15 genes and 5 metabolites.  
 

Gene	/	metabolite	 BioPAX	
total	

BioPAX	
extracted	

(-)	

BioPAX	%		
(-)	

BioPAX	
total	
(+)	

BioPAX	
extracted	

(+)	

BEL	total	 BEL	
extracted	

	(-)	

BEL	%		
(-)	

BEL	
extracted	

(+)	

BEL%	
(+)	

GLUL	 32	 20	 63%	 27	 84%	 0	 -	 -	 -	 -	

NOS1	 31	 21	 68%	 25	 81%	 5	 3	 60%	 3	 60%	
IDH1	 27	 8	 30%	 17	 63%	 0	 -	 -	 0	 -	

DHFR	 33	 14	 42%	 28	 85%	 0	 -	 -	 -	 -	
PFKL	 18	 6	 33%	 13	 72%	 2	 2	 100%	 2	 100%	
glutamine	
(CHEBI:28300)	

11	 0	 0%	 11	 100%	 0	 -	 -	 -	 -	

β-D-fructofuranose	
6-phosphate	
(CHEBI:16084)	

13	 0	 0%	 12	 92%	 0	 -	 -	 -	 -	

5,6,7,8-
tetrahydrofolic	acid	
(CHEBI:20506)	

15	 0	 0%	 6	 40%	 0	 -	 -	 -	 -	

pyruvic	acid	
(CHEBI:32816)	

82	 0	 0%	 36	 44%	 0	 -	 -	 -	 -	

nitric	oxide	
(CHEBI:16480)	

16	 0	 0%	 8	 50%	 0	 -	 -	 -	 -	

 
Table 1: Percentages of reactions or direct statements in pathway neighborhoods extracted by 
INDRA from Pathway Commons or the BEL Large Corpus, before addition of Conversion INDRA 
Statements (-) and after (+). 
 
The results show that before the addition of Conversions, INDRA captured no reactions involving 
small molecule metabolites and a relatively smaller fraction of reactions involving metabolic and 
second-messenger enzymes. Further, as seen from Appendix Table 1 of the revised manuscript, 
after inclusion of conversions, Statement coverage is comparable across signaling, transcriptional 
regulation, and metabolism. This shows that with respect to the types of reactions encoded in 
widely-used databases, INDRA is fairly effective and general. As discussed in the revised 
manuscript, the template-based extraction procedures used by INDRA prioritize the precision of 
extraction over recall, which explains why the percent extraction is less than 100% in most cases. 
We continue to extend work on this issue so as to get better coverage of database-encoded 
mechanisms; however, this is complicated by the widely varying ways in which mechanisms are 
encoded by human curators across source databases (see 1.1, below).  
 
In addition to adding extraction of Conversions from databases, we have also extended the TRIPS 
Processor to extract Conversions from natural language. For example, a user can now process the 
sentence “HK2 converts D-glucose and ATP into glucose-6-phosphate and ADP” and obtain a 
Conversion Statement containing the relevant chemical entities (grounded to their CHEBI 
identifiers). We thank the reviewers for pointing out these shortcomings in INDRA and believe that 
newly added functions address reviewers’ concerns and substantially improve the manuscript. 
 
GC5. Accessibility of the approach to non-experts 
Reviewer 1 points out that the “completion or modification of models…requires basic expertise in 
systems dynamics/modeling”; Reviewer 2 also notes that “the authors sell it as it is the way so 
that also laymen can generate complex models, but I actually see it the other way around.” 
 



 

 

We agree with the reviewers that we have not collected empirical data on the usability of INDRA by 
naïve users. We have tested the system extensively on users in our own lab, but we accept that 
this is not the same thing and we have clarified the manuscript accordingly. As we discussed in 
GC1, a proper evaluation of modeling task efficiency across different user populations would 
involve substantial human subjects studies. Moreover, we are currently unaware of any evaluations 
of this kind that have been performed for other systems biology modeling software.  
 
We acknowledge that even when the use of natural language makes model assumptions more 
transparent, use of natural language does not in and of itself address many of the other challenges 
in developing a meaningful dynamical model, including determination of parameter sensitivity, 
investigation of network dynamics, insight into combinatorial complexity, multistability, oscillations, 
etc. On the contrary: the use of natural language for modeling tends to more directly expose the 
ambiguities and unintended implications of common ways of describing biological mechanisms. 
Whether this is a strength (cf. Reviewer 3) or a weakness (cf. Reviewers 2 and 4) may depend on 
one’s perspective; however, it does concretely raise the question of who the ideal user of a system 
such as INDRA might be, and what use cases it best supports. 
 
As modelers ourselves, we have insight into the value of using INDRA for the following use cases: 
 
1. For an experienced modeler wishing to build multiple model types from the same set of 
assumptions. Using natural language, a modeler can build a dynamical model, a Boolean network, 
or a coarse-grained pathway map from the same set of high-level assertions. We use INDRA in this 
way for our own work and are not aware of other modeling software providing this capability. 
 
2. For an experienced modeler to rapidly prototype small models. In our own work, we have begun 
to use INDRA, rather than rule-based modeling or tools such as MATLAB to rapidly test hypotheses 
by putting together small models involving standard assumptions (e.g., one or two-step catalysis, 
independent binding sites, etc.). Also anecdotally, an experienced modeler (Dr. Matthew Peterson 
at MITRE Corporation) found it efficient to use INDRA and natural language to create the machine-
readable reference set of mechanisms used to evaluate the performance of NLP for literature 
reading, as discussed in (Allen et al. 2015) (see GC1). 
 
The use of INDRA for the following proposed use cases is more speculative: 
 
3. For interdisciplinary teams involving modeling experts and biological domain experts. This is a 
use case discussed in the manuscript. In this setting, the modeler and domain experts would work 
together to articulate the model assumptions in natural language, with modelers subsequently 
exploring issues relating to combinatorial complexity and system behavior, which could then be 
refined through further dialog with the domain expert. Building the model in natural language 
ensures that the model assumptions remain transparent to biologists working in the domain. We 
are currently exploring precisely this possibility in collaboration with Neal Rosen, a biochemist and 
cancer biologist whose highly influential study of BRAF biology we analyze in the current paper. 
 
4. For modeling novices to build coarse-grained “pathway-map” style models through a simplified 
interface. The reviewers note that building dynamical models raises issues that are difficult to 
resolve without a strong modeling background. However, constructing qualitative “pathway-map” 
style models (similar in scope and complexity to the Ras Pathway Map, for example) does not raise 
these issues. We have recently developed an initial prototype of a system that uses INDRA in the 



 

 

form of a web service, and exposes a visual web interface to allow users to describe mechanisms in 
natural language and view results in the form of a pathway map that is automatically linked to 
UniProt, HGNC, and other resources (Figure 2). Although the results are presented as a simple 
network, the assembled rule-based model can also be downloaded for further exploration or 
refinement. A robust version of such an interface could be used to enable communities of biologists 
to collaboratively curate and share information on mechanisms, similar to the effort undertaken 
manually by Dr. Frank McCormick in the context of the NCI RAS Initiative.  
  

 
 
Figure 2: Screenshots of a prototype web interface for natural language construction of pathway 
maps. On the left, sentences describing a simple MAP kinase cascade; on the right, simplified 
network representation of the underlying mechanisms. Colored regions of nodes indicate 
expression levels of RAS, RAF, MEK, and ERK family members in a particular melanoma cell line 
(A101D). 
 
Finally, we note that the natural language modeling and assembly approach described here lays 
the necessary foundation for two important use cases outside the scope of the paper that we are 
currently pursuing, namely i) building models directly from the scientific literature, and ii) creating 
intelligent machine assistants for biomedical scientists (Carvunis and Ideker 2014). 
 
DETAILED RESPONSES TO REVIEW 
In the responses below, we have added numbering to each comment to allow cross-referencing, 
and we have added our responses to reviewers in blue font for clarity. 
 
1. Reviewer 1 Major Comments 
 
1.1 (i) INDRA Statements are the key concept of the approach, serving as an intermediate 
representation (without additions or assumptions, claimed in the manuscript). The Statement 
templates and their structure appear, however, very tailor-made for certain aspects of cell 
signaling (e.g., the summary in Fig. S2 contains very specific classes such as RasGEF and RasGAP), 
and there is a risk that the design will not sufficiently generalize to other types of biological 
networks. Given standard ontologies and community standards for network representations (e.g., 
SBO and BioPAX), the definitions of templates require more justification and precision, in particular 



 

 

regarding the formal mapping between INDRA and standard classes (which should be coded in the 
Processor modules). 
 
The reviewer makes two important points here. The first concerns the ability of the INDRA 
Statement types to capture mechanistic information across a broad variety of biological subject 
areas. We addressed this concern in the General Comments (GC4, above), showing that while 
INDRA does not capture all mechanisms present in pathway databases, the revised tool does not 

appear to show a strong bias 
towards reactions involved in 
signaling. 
 
The reviewer’s second point 
concerns the formal mapping 
between INDRA and existing 
knowledge representation formats 
(e.g. BioPAX and SBO). To address 
this issue the revised manuscript 
includes an expansion of the INDRA 
Statement representation to include 
Systems Biology Ontology (SBO) 
annotation. These annotations apply 
not only to the Statement types 
(e.g., Phosphorylation, Activation, 
etc.) but also to Statement 
arguments (e.g., Kinase, Enzyme, 
etc.). We have integrated these 
links to SBO categories in the 
INDRA Statement JSON format (for 
example, see the “sbo” links in the 
example INDRA Statement graph in 
Figure 1). With this addition it is 
possible to make a principled 
correspondence between INDRA 
Statements and any other 
knowledge repositories that use 
SBO annotations. 

 
A formal mapping between BioPAX and INDRA Statement classes is problematic because 
information in BioPAX comes in the form of chemical reactions that are not “typed”; that is, they do 
not contain high-level semantic information, for example that a reaction represents a 
phosphorylation modification. Instead, this must be inferred by examining the left- and right-hand 
sides of the reaction to determine what kind of reaction occurs, and involving what proteins. 
For example, Pathway Commons contains (among others) the five distinct reactions shown in 
Figure 3 above (also Appendix Figure S10 of the manuscript) describing the phosphorylation of ERK 
(MAPK1/3) by MAP2K1. The semantics of reaction 1 assert that a version of MAPK3 is on the left 
hand side, another version is on the right hand side, and MAP2K1 serves as the controller. It does 
not explicitly indicate that the reaction is a phosphorylation event; such information can only be 
determined by examining the pattern of changes occurring between the left and right hand sides. 

Figure 3: Selected BioPAX BiochemicalReactions involving 
MAPK1/3 and MAP2K1 in Pathway Commons, displayed 
using the Chisio BioPAX Editor (ChIBE) (Babur et al. 2009). 
 



 

 

The BioPAX developers created the BioPAX Patterns software package to specifically identify sets of 
reactions matching pattern-based criteria (Babur et al. 2014). The INDRA BioPAX Processor reuses 
the BioPAX patterns package to identify and process reactions matching pre-specified patterns 
corresponding to INDRA Statements. Once extracted into INDRA Statements, the (low-level) 
biochemical reactions in BioPAX acquire high-level semantic annotations (e.g., SBO annotations) 
that can be propagated into assembled models. 
 
Reaction 5 in Figure 3 also represents a phosphorylation event, but it takes a substantially different 
form: here both MAP2K1 and MAPK1 are part of a complex together with ATP and ADP. This 
complex appears on the left-hand side and right-hand side of the reaction, and also serves as its 
controller. Due to the differences in structure between reactions, extraction patterns developed to 
match reaction 1 might not also extract reaction 5 as a phosphorylation event. The “best” patterns 
for extraction, in terms of precision and recall, depend on how reactions are curated or converted 
into BioPAX in practice; therefore, they must be developed and evaluated empirically. For this 
reason, we do not believe that a “formal mapping” between BioPAX/BEL and INDRA is feasible or 
useful. 
 
The mapping between BEL statements, BioPAX reactions and INDRA Statements is implemented in 
the code for the INDRA processors. To make the criteria used for extraction more explicit, the 
revised manuscript extensively documents extraction functions for BioPAX and BEL. (see INDRA 
documentation in Appendix and as part of online documentation, e.g. 
http://indra.readthedocs.io/en/latest/modules/sources/bel/index.html#indra.sources.bel.processor.
BelProcessor.get_modifications) 
 
1.2 (ii) Similarly, in terms of generalization and compatibility with existing systems, it is advisable 
to clarify relations to BioPAX and BEL, and give specific reasons for why automated extraction 
(instead of manual curation of statements after database searches already implemented in INDRA) 
fails or is limited. For example, statements such as p.25 'Perhaps unexpectedly, constructing 
executable models from pathway databases ...' appear to general and they may rely on outdated 
references. 
 
The challenge of assembling models directly from databases that we alluded to in the manuscript 
was not primarily one of extraction (as shown by Supplementary Table 1 of the revised manuscript, 
INDRA extractions into Statements shows good coverage of databases), but rather one of 
assembly. Consider the reactions shown in Figure 3 above, which co-exist in the Pathway 
Commons database. Clearly, these interactions cannot simultaneously be assembled into a single, 
coherent model. Hence, a human must either pick a specific Statement extracted from databases 
for inclusion in a model, or rely on knowledge acquired from databases to paraphrase relevant 
knowledge into natural language, as we have done in some of our case studies. To clarify this 
point, we have rephrased the last paragraph of the Discussion’s “Challenges in generating 
executable models from text” section (page 26 and 27). To emphasize, the issue here is not a 
limitation of INDRA but rather the wide variation in the representation of reactions in knowledge 
sources. 
 
In particular, comments on how specific processors need to be, for different (alternative) inputs, 
and to what extent processors are extensible (in contrast to the need to develop specific processors 
for each potential data source) could clarify these points. 
 



 

 

Processors are similar to each other in terms of their high-level approach: they query for patterns 
of template mechanisms and extract them as INDRA Statements. But due to the diversity of 
representations (e.g. biochemical reactions, semantic triples, event trees) and formats (e.g. RDF, 
JSON, XML) they need to be customized for each source. Compatibility with standardized exchange 
formats such as BioPAX and BEL ensure that INDRA can already draw on dozens of databases 
(Reactome, KEGG, Phosphosite, BioGRID, Panther, String, etc.) and NLP tools (TRIPS, REACH, and 
all tools that read into BEL (Rinaldi et al. 2016)). Existing and newly added support for widely used 
exchange standards and the modular architecture of INDRA (in which adding a new Processor 
module is straightforward) will allow us to support novel input sources in the future.  
 
1.3 (iii) Another aspect that warrant further discussion regards transparency of the INDRA system, 
especially concerning debugging. For example, how can users distinguish between cases of correct 
and incorrect processing of word models as in Fig. 4D? Does the INDRA system support textual or 
(ideally, as in Fig. 2 examples) graphical output at the statement level? 
 
This is an excellent point. As discussed in detail in GC3 above, we have now implemented 
transparently inspectable graphical, textual, and JSON representations for Statements. We have 
also revised and extended the “INDRA Statements represent mechanisms from multiple sources” 
section of the Results, added a new Supplementary Figure 2, and provided examples of inspecting 
Statements and PySB models in two Appendix iPython Notebooks. 
 
At which levels are errors generated for word statements that cannot be processed, or can be 
processed only partially? 
 
Errors in sentence processing are best identified by inspecting the Statements returned by the 
TRIPS Processor. If a sentence cannot be parsed, or the resulting TRIPS EKB structure does not 
match one of the TRIPS Processor extraction templates, no Statements will be returned for that 
sentence. Similarly, if a sentence is processed only partially, that will be apparent from inspection 
of the returned Statements. If the Statements yielded from text are satisfactory then the modeler 
can move on to assembly. We clarify this point at the end of the Results section “INDRA 
Statements represent mechanisms from multiple sources”. 
 
1.4 (iv) On usability, the manuscript emphasizes ease of communication on models and limited 
technical challenges for their construction. However, for the p53 and MAPK examples, completion 
or modification of models to represent biological phenomena as discussed in the text requires basic 
expertise in systems dynamics / modeling (e.g., identification of missing reactions, association of 
positive feedback associated with time delay) that are not commonly found among 'traditional' 
biologists. In this view, statements such as p.16 'Introducing alternative assumptions and 
mechanisms using natural language is straightforward and can be accomplished by individuals with 
little or no technical expertise.' appear exaggerated and a more detailed discussion of technical 
requirements on the user for model implementation vs. analysis is warranted. 
 
This is a good point and is addressed in detail in GC5, above. In the revised manuscript, we have 
modified the section referred to by the reviewer (now on page 17-18) to read: 
 

“The foregoing analysis of the Lahav and Purvis review illustrates several beneficial features 
of direct text to model conversion: (i) the possibility of identifying subtle gaps and 
deficiencies in word models with the potential to profoundly affect network dynamics and 



 

 

function; (ii) the ability to maintain precise congruence between verbal, pictorial and 
computational representations of a network; and (iii) a reminder to include neglected 
negative regulatory mechanisms when explaining network dynamics. We propose that 
future figures of this type include accompanying declarative text (precisely stated word 
models) on the basis of which graphs and dynamical models can be created. We have found 
that it is remarkably informative to experiment with language and then render it in 
computational form: it was this type of experimentation that led us to rediscover for 
ourselves the importance of negative regulation and nonlinear positive feedback in 
generating p53 oscillations.” 
 

1.5 (v) Finally, among the examples of INDRA usage, the example of Ras signaling should be 
expanded with additional evidence. A 'visually comparable' pathway map represents as a rather 
weak argument, given that Ras signaling was used more rigorously in the original DRUM 
publication (Allen, 2015); it could also be revealing to compare INDRA output (formally) with 
standardized pathway maps, such as those published in SBGN notation for several mammalian 
signaling pathways. In addition, while the Boolean simulation for Ras demonstrates a key concept 
of INDRA (assembly into models of different type), the discussed simulation represent a very 
simple case study that could be omitted. 
 
To clarify, the pathway model created from natural language by INDRA as shown in Figure 7 is 
structurally identical to the original diagram. In particular, the INDRA-assembled pathway map (i) 
includes the same set of proteins, (ii) represents the same set of interactions among these proteins 
and (iii) recapitulates the semantics and level of mechanistic detail of the original diagram in that 
interactions are represented as directed positive and negative edges or undirected edges indicating 
complex formation. To state this explicitly, we have extended the corresponding paragraph on page 
23 of the revised manuscript.  
 
By “visually comparable,” we were referring to the ability of the graph layout program used in 
conjunction with INDRA assembly (GraphViz) to produce an interpretable visualization of the model 
contents. In principle, the automated layout could have produced a result that was not amenable 
to human interpretation, leading to the conclusion that from a visualization perspective, a model 
assembled from natural language could not substitute for a hand-drawn pathway map. In contrast, 
we found that the pathway graph assembled and displayed automatically was “visually 
comparable” to the original model in terms of layout and readability. We have clarified this point on 
page 23 of the revised manuscript.  
 
Published research around Ras signaling was used in the original TRIPS/DRUM publication (Allen et 
al. 2015) as an initial use case to focus evaluations event extractions from the literature. In the 
model presented in Figure 7 of this manuscript (full text given in Appendix Section 2.5), every 
sentence used to define the Ras pathway map was correctly processed by TRIPS. This means that 
for this model description, as expected, superior precision is achieved as compared to results in 
Allen et al. (2015) for event extraction from literature.  
 
We appreciate the reviewer’s critique of the Boolean network example, but we have decided to 
keep it in the manuscript in order to emphasize that INDRA can be used to assemble multiple 
model types from a single set of assertions. We consider this one of its key features, and the 
examples take only a small amount of space. We argue that the simulation also demonstrates the 



 

 

fact that the resulting model is amenable to principled computational analysis – even if a simple 
one.  
 
Minor comments: 
 
1.6 (i) Title, abstract and general: The term 'word models' is not defined until late in the 
introduction; a definition in the abstract would be helpful. 
 
We have modified the first sentence of the abstract to read “Word models (natural language 
descriptions of molecular mechanisms) are a common currency in spoken and written 
communication in biomedicine …”. This edit fits within the 175-word limit. 
 
1.7 (ii) Legend to Fig. 1C: '... creates [an] Extraction Knowledge ...'. 
 
Thank you, we fixed this typo in the legend of Figure 1C. 
 
1.8 (iii) The introduction provides verbal arguments on the conceptual differences between INDRA 
and existing systems, which are well summarized in Fig. 8 and associated text. To better convey 
the concepts behind INDRA in a non-technical way it may be advisable to move this figure and 
(parts of the) text to the introduction. 
 
We carefully considered this suggestion but feel that Figure 8 requires a broader discussion of 
existing approaches (mathematical modeling, rule-based modeling) and we therefore think that it 
is better positioned in the Discussion. We appreciate that this is a matter of style, however. 
 
1.9 (iv) More recent developments towards community standards in systems biology should be 
referenced, for example, for whole-cell modeling (IEEE TRANSACTIONS ON BIOMEDICAL 
ENGINEERING, VOL. 63, NO. 10, OCTOBER 2016). 
 
This is an excellent point. The ability of INDRA to assemble annotated models from knowledge 
sources benefits heavily from the existence of community standards and curated resources. We 
have added a new paragraph to the “Relationship to previous work” section of the Discussion on 
page 28 of the revised manuscript, in which we refer to the many standards INDRA makes use of, 
including the reference suggested by the reviewer. 
 
Reviewer 2: 
 
2.1 As far as I see the approach seems to work (though there is no benchmark by which one can 
really measure this), but the individual steps are not really compared to the state of the art. When 
does the natural language processing fail? How complicated can these texts be? 
 
These important points are addressed in detail in GC1, above. There we refer to the formal 
evaluation of the TRIPS/DRUM system in comparison with other NLP systems for event extraction 
from the literature (Allen et al. 2015). 
 
2.2 My main concern is that I don't really see that the approach is a major step forward in making 
signaling models. 
 



 

 

The authors sell it as it is the way so that also laymen can generate complex models, but I actually 
see it the other way around. The models are generated basically by a black box, and very similar 
statements can lead to very different models, especially given the combinatorial complexity, and 
the authors show one example of such combinatorial explosion. 
 
As discussed in detail in GC5, above, we have reframed the likely use cases of the system and now 
explicitly state that we consider the “layperson modeler” use case to be more speculative 
(“Limitations and future extensions of INDRA” on page 29 and 30 of the revised manuscript). We 
discuss the issue of sensitivity of models to wording in GC2 and transparency of the internal 
processing steps in GC3. In particular, with the revisions made as part of this resubmission, it is 
now possible to examine the extraction and assembly steps in INDRA in detail. Our approach is 
most definitely not intended to be a “black box” and we apologize for not making this point clearly 
enough. 
 
2.3 The major advantage of computational models is (at least that is my view of it) that these are 
very explicit about the modeling assumption. This benefit is gone with this approach, so that other 
(more graphical ways) would be more explicit, such as SBGN editors or other editors. 
 
While graphical interfaces can be intuitive, like other low-level modeling formalisms, such 
interfaces convolve biological knowledge with reaction implementation. As discussed in detail in 
GC2, we believe that the approach described here is transparent because the knowledge-level 
assertions and associated assembly policies are distinct and explicit, rather than implicit and 
embedded in the final model (see also Figure 8B in the manuscript). In addition, both the 
intermediate stages (INDRA Statements, PySB rules) and concrete implementation resulting from 
assembly (species and reactions, SBML, SBGN, etc.) can be inspected as with any other model (see 
GC3, above). 
 
2.4 The other application where I could see this approach being useful would be to extract crude 
models from full text. However, for this the text mining seems to be rather limited in potential. 
 
As noted in GC1, processing full text articles is possible with the current system in place. Even 
now, INDRA Statements extracted from the literature can be used in models (an experimental 
prototype of such a system built on INDRA is available online at https://twitter.com/therasmachine 
and https://tinyurl.com/yaayuoy3) However, the challenge in assembling fragments in the 
literature into coherent executable models automatically involves new algorithms that go far 
beyond the scope of this paper. Some of the outstanding challenges involve resolving full and 
partial redundancies and conflicts. While NLP from the scientific literature is challenging, the 
bottleneck is not NLP itself but rather the imprecise and overlapping ways we describe biochemical 
mechanisms, which results in an assembly challenge. The NLP tools used by INDRA have been 
validated on full scientific literature text (Allen et al. 2015; Valenzuela-Escarcega et al. 2015). 
 
Reviewer 3: 
 
Major comments: 
 
3.1 1. Through the exercise of deciphering word models, the study highlights the crux of model 
building: the encoding of imprecise of often vague ideas about biological mechanism into 
unambiguous mathematical form. For me, the greatest take-away from the paper was that, even 



 

 

with a tool that understands spoken language, building a molecular model is an iterative dialogue 
between human and computer in which common ground is achieved by balancing model purpose 
with the requirement for discrete structures. This principle becomes clear through all three pathway 
examples, which each required some degree of expert knowledge in order to achieve a specific 
modeling purpose. 
 
We appreciate this comment and agree with the reviewer’s interpretation of the relationship 
between model definition at the level of knowledge and model implementation at the level of low-
level executable forms (e.g. mathematical equations).  
 
3.2 2. It seems that INDRA ought to be able to handle assembly of statements in which two 
mechanisms are embedded. For example, we might say that "EGFR activates SOS" and that "EGFR 
activates SHC". Both statements are true. The first statement is correct but has not defined the 
intermediate (SHC) that mediates the activation of SOS by EGFR. Similarly, "MEK1 phosphorylates 
ERK2" and "MEK1 phosphorylates ERK2 at threonine 185" should be merged into a common 
mechanism that reduces to the second statement. Does INDRA allow for these types of overlapping 
word models to be supplied and reconciled? 
 
This is an important feature and would indeed be required for the unsupervised, automated 
assembly of models from primary sources (literature and databases)—a use case distinct from 
what we present in this paper. As mentioned above, INDRA has a prototype module that resolves 
overlaps such as the one provided by the reviewer (see INDRA documentation at 
http://indra.readthedocs.io/en/latest/modules/preassembler/index.html#module-
indra.preassembler). This capability fits into a larger framework of assembly features currently 
under development that are beyond the scope of this work. In the current manuscript, we address 
only use cases where the modeler is in full control of the content of the model and is responsible 
for providing non-conflicting and non-redundant mechanisms. However, the reviewer is correct in 
asserting that a generalized, automated text-to-model system will require the ability to handle 
overlapping mechanisms. 
 
3.3 3. Supposing INDRA may be applied to large collections of natural language, how would it 
handle apparently contradictory information (e.g., X activates Z; X inhibits Z)". One could imagine 
a scenario in which both statements are true (e.g., an incoherent feedforward loop in which X 
activates Z directly but inhibits Z through intermediate Y). It may be that this capability of 
assembling language into an executable model is beyond the scope of the current implementation 
of INDRA, which is aimed primarily at providing a modeling interface that begins with natural 
language. However, the capability of INDRA to establish equivalence between multiple aliases of 
the same biological entities (described on p. 16) leads me to believe that it is intended (at least 
eventually) for application to large databases of mechanistic information in which contradictory 
mechanisms are almost certain to exist. I would like to see a more precise description of the 
context/limitations/eventual utility of INDRA. 
 
Like the reviewer, we also anticipate that with additional development, INDRA could be used to 
automatically construct models from large databases and the literature. Identifying and resolving 
conflicts, particularly when the conflicts may have resulted from curation or NLP errors, is one of 
the many assembly issues that arise in this process.  
 



 

 

Such conflicts could be resolved in multiple ways. First, conflicts can often be resolved if more 
context is available (e.g. X activates Z in the nucleus vs. X inhibits Z in the cytoplasm). Because 
INDRA Statements carry contextual information (if available from a source) such conflict resolution 
may be possible. Second, it may be possible to determine that one of the conflicting statements 
has substantially more evidentiary support than the other, allowing the conflict to be resolved in its 
favor a priori. Since Statements are collected from multiple sources with different levels of 
reliability it could be possible to determine the corroboration of one Statement by another thereby 
providing information on the reliability of each mechanism overall (see INDRA documentation at 
http://indra.readthedocs.io/en/latest/modules/belief/index.html for an early prototype of such an 
approach). Third, in some cases it may be possible to include both conflicting Statements in a 
model and then condition the model on a particular dataset to determine which mechanisms are 
more likely to be true or relevant a posteriori. 
 
In the previous version of the Discussion we mentioned that “Elsewhere we will describe progress 
on the task of extracting pathway information from the literature, which presents challenges not 
only for NLP but also for assembly (due to the large amount of irrelevant, redundant, overlapping, 
and erroneous information returned).” We have significantly extended this section to now read 
(page 30): 
 

“The TRIPS system (as well as other NLP systems we tried, such as REACH) can be used to 
process the more complex and ambiguous language used in scientific publications and they 
are both state of the art systems with different strengths and weaknesses. Empirical results 
presented in (Allen et al, 2015) show that TRIPS compares favorably in precision and recall 
to ten other NLP systems on an event extraction task from biomedical publications, and 
reaches precision and recall levels close to those produced by human curators. While 
reading from the biomedical literature is less robust as compared to reading the declarative 
language used in this paper, the fundamental challenge in generating models directly from 
literature information is not reading but knowledge assembly. The assembly challenge 
involves multiple interconnected issues, including: (i) the large amount of full and partial 
redundancy of knowledge generated when mechanisms are read at scale (e.g. MEK 
phosphorylates ERK vs. MEK1 phosphorylates ERK); (ii) inconsistencies between knowledge 
collected from multiple sources which may or may not be resolvable based on context; (iii) 
the distinction between direct physical interactions and indirect effects; and (iv) technical 
errors such as erroneous entity disambiguation and normalization. In the approach 
described here, human experts simplify machine reading and assembly by paraphrasing 
statements about mechanisms into simplified, declarative language. As illustrated in the 
POMI models of p53 dynamics, the use of simplified language is not only useful for 
machines, it helps to clarify complex issues for humans as well.  However, we are actively 
working to extend INDRA so it can assemble information from the primary scientific 
literature into coherent models.” 

  
3.4 4. An unexpected consequence of INDRA is that it may serve a reverse and complementary 
function: to improve the precision of how we speak about biological mechanisms. The example of 
the problematic phrase "ATM activates itself" highlights how a tool like INDRA could be useful in 
this regard. 
 
This is a good point and we agree that INDRA provides a principled way to test whether a 
mechanism, as described in natural language, corresponds to a model with the intended behavior. 



 

 

This can be used to improve the wording of scientific claims and ensure that what is said is 
congruent with what is meant. 
 
Minor comments: 
 
3.5 1. The statement "...there is little evidence that creation of new word models is being routinely 
supplemented by formal modeling approaches" (p. 2) is unclear at this point in the manuscript. I 
think it becomes clear in the Results section that Assembly can be of great benefit to improving the 
precision of word models and to refining and challenging existing statements about biological 
mechanism. 
 
We have edited the last two sentences of the first paragraph of the introduction to read: “The 
challenge arises in linking a rich ecology of word models to computational representations of these 
models that can be simulated and analyzed. The technical environments used to create and explore 
dynamical models remain unfamiliar to many biologists and a substantial gap persists between the 
bulk of the literature and formal systems biology models.” This edit is intended to emphasize the 
issue that word models are currently created without a sense of their formal implications, rather 
than suggesting that word models should be exclusively supplanted by formal models.  
 
3.6 2. The acronym SBML is used before it is defined (p. 2). 
 
We now spell out SBML explicitly on page 2. 
 
3.7 3. The acronym UML is used before it is defined (p. 8). 
 
We added the definition of UML on page 8. 
 
3.8 4. EKB is defined in the glossary on p. 5 but then redefined on pp. 8 and 10. 
 
In the case of page 8, we believe spelling out “extraction knowledge base” again helps readability. 
We removed the redefinition on page 10. We are happy to be guided by the journal style on this 
point. 
 
3.9 5. In general, the paper is very acronym-rich, but I don't see any way around this. 
 
We hope that the glossary helps with this problem; we can further expand the number of terms in 
it, if the editors approve. 
 
3.10 6. It would be useful for many readers to have a reference associated with the sentence that 
ends "...reducing the identifiability of the model." (p. 14). 
 
We added a reference to (Raue et al. 2009) which gives a good overview of structural and practical 
identifiability in dynamical systems biology models. 
 
Reviewer 4: 
 
4.1 General remarks 
 



 

 

- Are you convinced of the key conclusions? 
 
The authors successfully demonstrate that executable models can reliably generated from natural 
language statements using their newly developed tool. They also successfully show -qualitatively- 
that expected behavior can be recapitulated by models generated from natural language. 
 
The reliability of the approach and potential of natural language models in enabling collaboration is 
somewhat convincing. However, the examples in the study failed to produce expected results with 
initial natural language descriptions and iterative adjusting of phraseology and re-running the 
pipeline was required to obtain the desired result. The sensitivity of the approach to specific 
wording limits the use of the technique to those with some knowledge of the conversion process as 
those unfamiliar with underlying data structures will quickly resort to a trial and error approach to 
rewording the descriptions. 
 
The issue of the sensitivity of the final model to wording is discussed in detail in GC2. In fact we 
show that INDRA is not particularly sensitive to alternative wording except when the alternatives—
however subtle—refer to fundamentally different mechanisms (e.g. cis and trans phosphorylation).  
“Iterative adjusting of phraseology” was not necessary to obtain a desired result beyond the 
mechanistically significant variants we discuss in the text. We believe that the reviewer has 
misunderstood our point with respect to alternative ways of describing a mechanism verbally and 
apologize for our lack of clarity. We have substantially rewritten the relevant sections of the 
manuscript in an attempt to address this misunderstanding (pages 17-18). 
 
The example of the p53 model was intended to highlight the fact that informal descriptions that are 
regularly used by biologists (e.g., the p53 diagram drawn from (Jeremy E. Purvis and Lahav 2013)) 
are often incomplete and, when taken literally, cannot reproduce the dynamic behavior they are 
meant to explain. The fact that the initial natural language description “failed to produce expected 
results” reflects on the limited content of the diagram, not on the software or approach. The 
process of improving the language was included in the manuscript precisely to show the series of 
steps required to identify and clarify, in natural language, the mechanistic gaps in the original 
diagram. This is a feature rather than a bug of our system. 
 
To further address this issue and make the conversion process more transparent we have added 
features to INDRA that allow Statements extracted from sentences to be inspected in a variety of 
formats, and have provided examples in the form of two Appendix iPython Notebooks. 
 
4.2 Inevitable combinatorial complexity (acknowledged by the authors), combined with the 
author's choice of reaction scheme (two-step), generated models that were unnecessarily complex. 
This complexity hampers further modeling and parameterization required to make predictive 
models and would also be a barrier to the use of the described technique as a collaborative tool. 
 
Combinatorial complexity resulting from natural language descriptions is addressed in GC2, above. 
In the INDRA approach, models will be as complex as implied by the description given by the user. 
Typically, providing stricter context on mechanisms (by adding more assumptions) will result in 
reduced combinatorial complexity. An example is “MEK binds ERK” versus “MEK not bound to PP2A 
binds ERK”. Here the former implies the existence of more individual species and biochemical 
reactions but has fewer assumptions compared to the latter. The number of parameters scales with 
the number of rules (which is proportional with the number of INDRA Statements) and not the 



 

 

number of biochemical reactions and species. Therefore, while combinatorial complexity tends to 
make simulation more computationally expensive, it does not in itself make parameterization more 
challenging (as an example, consider a simple polymerization model with an infinite number of 
species and reactions but only a single reaction rate parameter). 
 
To address the reviewer’s concern, we have expanded on the number of reaction policies to include 
more sophisticated one-step mechanisms that tend to mitigate the problem of combinatorial 
complexity. 
 
4.3 - Place the work in its context. 
 
Most progress in the area of enabling technologies/software for computational modeling has been 
focused on software environments for the construction of pathway diagrams and the creation of 
models from these diagrams (Cell Designer, COPASI, SimBiology). Diagrammatic representations 
have been widely and successfully used as tools for collaboration between biological and 
computational experts. 
 
This work is not intended to undermine the value of graphical standards and tools in systems 
biology modeling. Rather, it aims to highlight a distinct approach in which knowledge-level 
statements (which generally take the form of natural language) are decoupled from a particular 
formal implementation, whether in graphical or mathematical form. Indeed, the revised INDRA 
software is integrated with graphical formats and interfaces (SBGN, GraphViz, CyJS, NDEx). We 
emphasize this now on page 29 of the Discussion: 
 

“By uncoupling knowledge-level statements from a particular formal implementation, 
whether graphical or mathematical, natural language modeling is complementary to and 
compatible with a wide variety of input and output formats. In the case of INDRA, an 
intermediate representation enables a wide variety of many-to-many conversions involving 
text, BioPAX, BEL, PySB, BNGL, SBML, ODEs, logical models and graph-based formats such 
as SBGN (an INDRA-assembled SBGN graph of the model presented in Figure 5C is shown 
in Supplementary Figure S9). Further integration of natural language and graphical 
modeling, for example by coupling INDRA to SBGNViz graphical interface (Sari et al, 2015), 
will improve the quality of human-machine interaction and further facilitate model assembly 
and exploration.” 

 
We provide INDRA as a library that can be easily imported and built upon in existing (graphical) 
tools, and we have also implemented a REST API that can be run and called locally, making the 
natural language modeling features of INDRA usable from non-Python environments (we have 
highlighted this new feature in the “Software and model availability” section of Materials and 
Methods). Thus, we believe that natural language and graphical modeling are natural allies and not 
alternatives, and we provide a basis for integration. 
 
4.4 The approach described here provides an alternative to diagrammatic formalisms. This study 
represents an important component in a long-term goal of systems biology, which is mining 
biological literature in a manner amenable to theoretical analysis. When combined with automated 
literature text-mining and existing parameter estimation techniques the work presented here will 
presumably provide an important component of a complete automated model construction pipeline 
able to construct executable models for any biological domain. 
 



 

 

We appreciate this comment and agree with the reviewer that our work addresses part of the 
challenge of automated modeling from literature. Although not complete, our preliminary results 
from ongoing developments indicate that the architecture and conceptual approach of INDRA will 
be extensible to this grander task. 
 
4.5 - What is the nature of the advance (conceptual, technical, clinical)? 
 
The work describes a technical advance in converting parsed text statements into executable 
modeling. 
 
4.6 - How significant is the advance compared to previous knowledge? 
 
In isolation in its current form the study represents a moderate advance, however if issues of 
complexity explosion and sensitivity to wording are improved then the tool presented here will be 
an important advance enabling widely-useful, automated, model construction and analysis from 
scientific literature. 
 
We address the question of combinatorial complexity and sensitivity to language above. 
 
4.7 - What audience will be interested in this study? 
 
The study will be of interest to systems biologists working on model construction and dynamical 
pathway analysis. 
 
Major points 
 
4.8 -Specific criticisms related to key conclusions 
 
The sensitivity to specific wording generating qualitatively distinct behavior (demonstrated by the 
ATM trans-phosphorylation example) seems to be a significant limitation in the applicability of the 
approach. While the study claims to enable model construction by individuals with little or no 
technical expertise, significant knowledge of which phrasing changes can generate significantly 
different dynamical systems is required to successfully use the technique. 
 
We have addressed sensitivity to wording in detail in GC2 above, and as described in GC5, have 
edited the manuscript to de-emphasize the use of INDRA for the construction of dynamical models 
by non-experts (“Limitations and future extensions of INDRA”, page 29 and 30). We hope that 
these changes address this important issue. 
 
4.9 Most successful model-driven studies utilize elegant models containing ~1 reaction for each 
biochemically significant process. The "word model" format here is amenable to such elegant model 
construction, however, in its current implementation that is not achieved. 
 
There have been a number of successful modeling studies in systems biology that have made use 
of combinatorially complex models, typically for studies of signaling (Deeds et al. 2012; Suderman 
and Deeds 2013; Hlavacek et al. 2003; Sneddon, Faeder, and Emonet 2011; Chen, Niepel, and 
Sorger 2010). However, it is true that combinatorially complex models are less widely used than 
their simpler counterparts and represent the most straightforward modeling use case. 



 

 

 
Construction of models containing one reaction for each biochemically significant process is in fact 
currently achievable using INDRA, if that is the modeling goal, by using the “one-step” policy 
during assembly. This was the approach taken in the p53 example described in the manuscript, 
which did not result in a combinatorially complex model. To further support this use case, we have 
also implemented a one-step policy with a Michaelis-Menten rate law as suggested by the reviewer 
(see answer to 4.13 below). 
 
In models involving binding or multiple sites of post-translational modification, eliminating 
combinatorial complexity requires making interactions specific to a single species by adding 
additional assumptions in the form of natural language (a simple example involving MEK and ERK is 
given above in the answer to 4.2; other examples of using natural language to clarify context are 
shown in Appendix iPython Notebook 2 and in the BRAF model in Figure 6 of the manuscript). 
Reducing combinatorial complexity in models of biological systems that are inherently 
combinatorial (e.g., signalosome assembly, multisite post-translational modification, 
polymerization, etc.) requires that these assumptions be made, regardless of the modeling 
formalism used—there is no free lunch in this respect. In the natural language modeling approach 
these assumptions are declared explicitly as part of the high-level mechanistic assumptions, rather 
than being incorporated implicitly in the final model (see GC2 for further discussion). 
  
4.10 The authors argue, somewhat unconvincingly, that natural language provides a superior 
collaborative framework to traditional wiring diagrams. Many of the weaknesses of diagrammatic 
representations are shared by natural language descriptions of processes. Vague wording inhibit 
quantitative analysis in the same way vague diagrammatic representations do. Large lists of plain-
text statements become difficult to understand with scale in the same way diagrammatic 
representations do. 
 
In the original manuscript, our only comment regarding graphical approaches concerned the 
challenges associated with modeling combinatorial complexity that is typical of signaling systems. 
For such systems, a verbal description can be relatively compact whereas a graphical 
representation that involves the representation of specific chemical species will quickly become 
unwieldy. For large systems in which the correspondence between sentences and reactions is closer 
to one-to-one (e.g., large metabolic models), it is indeed possible that curation of a large body of 
natural language text could be onerous. 
 
However, our more general goal is distinguishing between curated knowledge about mechanisms 
and specific executable implementations. We have implemented a system in which mechanistic 
knowledge is curated in natural language, but one could develop an analogous system in which the 
knowledge-level assertions were curated graphically. In fact, the authors of the mEPN graphical 
pathway modeling language identified precisely the same drawback in pre-existing graphical 
formalisms for systems biology, noting that “currently, pathway depiction and pathway modelling 
are generally considered to be separate disciplines.” (O’Hara et al. 2016). The approach of mEPN 
differs from INDRA in other respects (it does not incorporate a separate assembly step, instead 
supporting direct simulation of the pathway diagram itself) but it is aimed at the same conceptual 
problem. As described in the answer to 4.3, it is not difficult to imagine a multimodal knowledge 
curation system incorporating both natural language and diagrams that could subsequently be 
simulated. 
 



 

 

4.11 The authors even use an "informal" diagram to construct a word model, a step that requires 
similar effort and expertise as converting an "informal" diagram into a mathematically complete 
notation such as SBGN in widely used software. 
 
This comment may be the result of a misunderstanding. In both the p53 and Ras pathway 
examples, we drew mechanistic knowledge from a previously published “informal diagram” and the 
accompanying review article. These diagrams were manually created by experts other than us in a 
form that was not directly amenable to computation. 
 
The purpose of these examples was not to show that natural language is the most efficient way to 
build a computable model from such a diagram. Instead, we aimed to explore the possibility that, 
in the context of a system such as INDRA the original curators of these diagrams could have used 
word models to curate the same knowledge originally. By doing so, they would have ended up with 
1) a description of the knowledge-level mechanistic assertions that would be transparent to any 
biologist, 2) one or more executable models based on those assertions (Figures 5, 6 and 7), and 3) 
an accompanying diagram automatically generated from those assertions (Figure 7).  
 
While it is true that the original authors could have curated the p53 diagram and Ras pathway map 
in SBGN, we believe that a model definition in English language has many advantages: it is highly 
intuitive, can be viewed and edited without specialized software, and does not require learning a 
specialized syntax. Though we acknowledge that the possibility that such a system could be widely 
used by biologists unfamiliar with modeling is speculative, we believe that for certain qualitative 
modeling applications this is achievable (see also GC5).  
 
4.12 -Specify experiments or analyses required to demonstrate the conclusions 
 
Sensitivity to wording should be addressed. Rather than allowing "ATM trans-phosphorylation" to 
silently generate significantly different models to "Active ATM phosphorylates ATM" a step in which 
ambiguities such as these are identified and clarified when INDRA is run would greatly improve the 
approach. 
 
As discussed in GC2 and GC3, we have provided additional tools and examples showing how the 
different Statements (and subsequently models) yielded by these sentences can be evaluated by 
the user before proceeding to model analysis. We have extended the corresponding text on page 
17 of the manuscript to highlight the fact that the cis- vs. trans- phosphorylation was interesting 
not because it reflected an unexpected result from TRIPS or INDRA, but because of the impact 
these two distinct mechanisms had on the dynamics. We believe that this in combination with 
multiple revisions to the text address the reviewer’s concern. 
 
4.13 Combinatorial explosion must be addressed. Michaelis-Menten kinetics should be included in 
addition to the 1- and 2-process mechanisms to enable construction of elegant models that include 
saturating kinetics. 
 
Combinatorial complexity is addressed in GC2, 4.2, and 4.9. We agree with the Reviewer that the 
lack of support for Michaelis-Menten kinetics represented an important limitation and have 
incorporated it into the latest release of INDRA and into our revised manuscript. Assembly with 
Michaelis-Menten kinetics is now a featured policy in Figure 4, and an example of assembly using 
this policy is given in Appendix iPython Notebook 2. We have also implemented a Hill equation-



 

 

based policy for RegulateAmount INDRA Statements to allow for the straightforward modeling of 
saturable transcriptional activation. 
 
4.14 If the number of generated ODEs is similar to the number of phrases used as input the 
technique will be greatly improved. 
 
We agree and argue that this is possible with INDRA as discussed in 4.9 above. 
 
4.15 The study's focus on replacing diagramtic representations should be adjusted to instead focus 
on the important role of INDRA in forming part of a highly enabling, automated pipeline from 
literature to automatically generated and parameterized models. Where appropriate the specific 
sections of the manuscript of most relevance to answering these concerns are highlighted below. 
 
We agree; as discussed in 4.3 and 4.10, it was not our intention to imply that natural language 
would replace formal diagrammatic representations, but rather that it represents a highly 
complementary approach. We have updated the corresponding section on page 28 and 29 under 
“Relationship to Previous work” in the revised manuscript. 
 
4.16 Minor points 
 
-Easily addressable points 
Introduction. 
Paragraph 1: 
Include modeling of ERK, P53, NFkB and other signaling networks into examples of mechanisms 
elucidated by computational modeling. 
 
In the first paragraph of introduction we now cite (Hoffmann et al. 2002) (NFkB), (J. E. Purvis et al. 
2012) (P53 / DNA damage response), and (Chen et al. 2009) (ERK) as further examples of 
mechanisms elucidated by computational modeling. 
 
4.17 Is it possible to generated some estimate of how many papers contain formal language of 
high enough quality to enable "word model" construction and don't contain a diagram in a formal 
notation enabling model construction. 
 
To our knowledge, the most comprehensive database of dynamical models is the BioModels 
database. As of June 2017 there were 640 curated and 995 non-curated models in the BioModels 
database with 15 curated models annotated as having been published in 2016. In contrast, 140 
articles were annotated in PubMed as being mechanistically relevant to a single gene, BRAF, in 
2016 alone (we note that these annotations, while containing no false positives, are only a lower 
bound on the number of publications relevant to BRAF). This seems to suggest that the vast 
majority of publications that describe molecular mechanisms do not contain a formal modeling 
component. Our preliminary results show that the literature is rich in declarative statements of the 
form used in word models. However, statements in the literature, taken globally, are redundant, 
conflicting and apply in distinct contexts which are not necessarily relevant to a particular model. 
As we argue in GC1 above, while natural language processing tools (Allen et al. 2015; Valenzuela-
Escarcega et al. 2015) connected with INDRA can already extract Statements from the literature, 
turning the collection of these Statements into coherent and causally sound models is a challenging 
assembly problem that goes beyond our current work.  



 

 

 
4.18 Paragraph 2: 
Add Copasi (Hoops et al 2006) and BioModels database (Juty et al. 2015) to list of tools for 
improving mechanistic modeling. 
 
We included both references suggested by the reviewer into the second paragraph of the 
Introduction of the revised manuscript. 
 
4.19 Paragraph 5: 
Natural language suffers the same issues of differences in style/syntax between authors as 
differences in diagrammatic notation. There are many phrases that could represent the same arrow 
on a diagram. While paragraph 3 dismisses diagrams as struggling to deal with large complexity 
and large scope, how natural language descriptions overcomes this is unsatisfactorily described. 
"sophisticated NLP algorithms" is vague phraseology that should be replaced with a better 
description of the algorithmic innovation or novel application of existing specified algorithms. 
 
We agree that natural language varies in style and syntax, but we argue that the TRIPS system 
effectively normalizes variability in language with the same underlying meaning into a single logical 
form (see Figure 5D, Box 1, Supplementary Methods 2.1, and Allen et al. (2015)).  
 
We have removed “sophisticated” from the sentence referred to by the reviewer and added more 
detail to state which specific concept in the TRIPS system handles variability in style and syntax. 
The revised sentence now reads: “…INDRA can accommodate flexibility in style and syntax through 
the use of NLP algorithms that normalize variability in expression into logical forms that effectively 
represent the underlying meaning (Box 1).” 
 
On the note of diagrams, our intention in paragraph 3 was not to “dismiss” diagrams but to point 
out one of their important limitations in modeling signaling pathways, which we believe is justified.  
 
4.20 Results 
Page 13: 
The "one-step policy" in which an enzyme-mediated reaction is represented by a single process 
does not necessarily ignore enzyme saturation and require only a single parameter, as this single 
step process could be represented with Michaelis-Menten (MM) kinetics, which is supported by 
PySB and uses 2 parameters. The one step policy is valid in excess enzyme regimes. The one step 
policy with MM kinetics extends the one-step policy to include enzyme saturating regimes. This is 
the most widely used formalism in model building and is currently ignored. The 2-step policy is only 
required if MM assumptions are not met. The addition of MM kinetics may prevent a model with 28 
PySB rules exploding into a model with 99 differential equations, and a model with 34 rules 
exploding into 275 ODES, while still capturing important kinetic characteristics. 
 
We agree with the reviewer on all points regarding the use of each type of kinetics. As mentioned 
above, we have implemented a one-step Michaelis-Menten policy and featured it in Figure 4 of the 
revised manuscript as well as Appendix iPython Notebook 2. 
 
4.21 Page 15: 
In reference to the constitutive negative regulation of Mdm2 and Wip1 clarity should be provided as 
to which parameters in the ODE model of Batchelor et al, 2011 were missing from the diagram. I 



 

 

am unable to locate p14ARF or HIPK2 inhibition in the paper, supplement or MATLAB files of 
Batchelor et al. If other studies were used for the addition of this mechanism then that should be 
clarified as it seems the model introduced here required additional mechanism to recreate the 
same behavior seen in Batchelor et al. 2011. 
 
As described above in 4.11, the purpose of the p53 example was not to fully recapitulate the 
formal model in (Batchelor et al. 2011), but rather to highlight the dual value of natural language 
as a medium for communication about mechanisms and (automated) construction of formal 
models. As we describe in the text, the negative regulation of Mdm2 and Wip1 are missing from 
the original diagram. We have added p14ARF and HIPK2 ourselves, as known negative regulators 
of Mdm2 and Wip1 (citations where these mechanisms are described in detail are given in the 
manuscript). In fact, these negative regulations are modeled in Batchelor et al. (2011) but are only 
defined up to a generic negative term in the corresponding ODEs and not identified mechanistically. 
The reviewer is therefore correct that p14ARF and HIPK2 are not present in the Batchelor et al 
model. 
 
4.22 Time delay is added using a positive feedback however this limits the applicability of the 
approach as positive feedback does not exist in all systems with delay. INDRA should either be 
extended to accept word models that include "X activates Y with a delay", or this limitation should 
be explicit. 
 
Our approach to modeling mechanisms (positive feedback or otherwise) behind time delay is 
biochemically explicit and “with a delay” will not directly be translatable into an underlying 
mechanism. INDRA is aimed to explore the properties of linked sets of biochemical mechanisms, 
drawn from high-level assertions, and is not capable of assembling mechanistically undefined 
phenomenological kinetic properties such as “with a delay”. 
 
4.23 "Oscillation was robust to changes in kinetic parameters" may be confusing as properties such 
as amplitude and frequency are highly parameter sensitive. Suggest: "The presence of oscillations 
was robust to changes". 
 
We agree, and we changed the sentence of page 16 of the revised manuscript as the reviewer 
suggests. 
 
4.24 While it is clear that essential reactions for the dynamical system were omitted from 
diagrams they were also omitted from the text and had to be manually added. This is not an 
argument for word-models over diagramtic representations as both were insufficient from a single 
study. Please clarify. 
 
In the case study presented in Figure 5 of the Results, we show that word models can be turned 
into mathematical models with INDRA, allowing hypotheses, as described verbally, to be rigorously 
evaluated. Indeed, informal diagrams alone and informal text alone aren’t enough to rigorously 
evaluate whether a description of a mechanism is “valid” and sufficient to reproduce a given 
behavior. However, once assembled into a model by INDRA (see Figure 5 and associated text), it 
was immediately clear that some necessary mechanisms were not made explicit in the original 
diagram. We therefore added these mechanisms as additional sentences and were able to show 
that they were sufficient to produce an oscillatory model. The main argument here is the use of 
models (in this case automatically derived from text by INDRA) over non-formalized descriptions. 



 

 

 
4.25 The text describes the manual construction of word models from diagrams and other studies 
and then states that "machine-assembled" word models are useful. Please clarify that these are 
manually constructed word models that are then machine-assembled into an executable form. 
 
We changed the corresponding paragraph and the sentence now reads “By converting word models 
directly into executable computational models, we ensure that verbal descriptions and dynamical 
simulations are congruent.” on page 16 of the revised manuscript. 
 
4.26 Page 16: 
Biologically descriptive phrases such as ATM trans-phosphorylates itself should be added to the 
tested phrases here. 
 
To make the model in Figure 5E more clear and to emphasize the mechanistic (rather than 
linguistic) distinction between the cis- and trans-phosphorylation models, we rephrased the first 
sentence of the model shown in Figure 5E to “Active ATM phosphorylates another ATM molecule”. 
We also tested the sentence “ATM trans-phosphorylates itself”, which yields the expected trans-
phosphorylation mechanism. The corresponding paragraph (page 17) in the manuscript now reads: 
 

“By adding and removing different aspects of the underlying mechanism using natural 
language we observed that including the mechanism “Active ATM phosphorylates another 
ATM molecule” was essential for oscillation; the phrase “ATM phosphorylates itself” 
generated a valid set of reactions but did not create oscillations for any of the parameter 
values we sampled. The difference is that “Active ATM phosphorylates another ATM 
molecule” corresponds to a trans-phosphorylation reaction (other phrasings also work, such 
as “Active ATM trans-phosphorylates itself”)—i.e. one molecule of ATM phosphorylates 
another molecule of ATM—which produces the non-linearity necessary for a time delay. In 
contrast, “ATM phosphorylates itself” implies modification in cis, which is incapable of 
generating oscillations in the p53 network.” 

 
4.27 Page 21: 
While the combinatorial complexity problem is addressed here the previous paragraph describes 
INDRA as a starting point for modeling. Models of this complexity are poor starting points and this 
must be should be addressed before INDRA can be considered a recommending starting point for 
modeling over diagrammatic inputs like symbiology or user-friendly packages such as COPASI. The 
time investment required to learn software such as COPASI/SimBiology/CellDesigner is not far 
greater than the learning required to understand the impact of phraseology on dynamics and in the 
corrent format they generate more elegant models as "starting points". Either address complexity 
of generated models as described above or clarify the expected use of the large models generated, 
I would not recommend them as a starting point for model construction but perhaps as tools to 
identify knowledge gaps, generate diagrams and target manual model construction. Intead 
highlight the importance of this approach in enabling automated, text-mined, model construction 
from the literature here. 
 
We discuss the issue of combinatorial complexity in detail in GC2 and GC3 above. We also argue 
that the multitude of specific complexes assembled around BRAF (including Vemurafenib, RAS and 
MEK as constituents) is essential for the understanding of the resistance to Vemurafenib. 
 



 

 

4.28 Page 25: 
The following sentence is inaccurate: "molecular species are directly instantiated as variables and 
related to each other using one or more differential equations for each mass action reaction". 
Rather in dynamical systems modeling molecular species are each represented by a differential 
equation and the terms of the differential equations are determined by the reactions. 
 
We have corrected this sentence, which is on page 27 of the revised manuscript, to now read “For 
example, in an ODE-based model, molecular species are directly instantiated as variables and 
related to each other using one or more differential equations containing terms determined by each 
mass action reaction”.  
 
4.29 Page 27: 
Cytoscape offers importing from various databases and outputting SBML among other formats and 
should be mentioned here (Cline et al 2007 Nature Protocols). Cell Designer also enables input 
from a number of file formats including BIOPAX, simulation within Cell Designer and export as 
SBGN (Funahashi et al 2003) including plugins such as SBMLsqueezer which enable generation of 
rate equations from diagrams that can be created by easily without mathematical skills. Include 
these here. 
 
We have extended paragraph 2 of the “Relationship to previous work” section of the discussion on 
page 29 of the revised manuscript, and included all the references suggested by the reviewer. 
 
4.30 -Presentation and style 
Good 
 
-Trivial mistakes 
Figure 4: Rule 1 of one step policy uses 'kc' parameter in diagram and 'kf' parameter in code. 
 
We fixed this typo, now both the diagram and the code contain ‘kc’ as the parameter. 
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2nd Editorial Decision 18 October 2017 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your study. As you will see below, they think that 
most of the previously raised issues have been satisfactorily addressed. Reviewers #1 and #4 raises a 
few remaining minor concerns, which we would ask you to address by modifying the text in a minor 
revision.  
 
 
----------------------------------------------------------------------------  
REVIEWER REPORTS 
 
Reviewer #1: 
 
The revision by Gyori and colleagues is very thorough and commendable, addressing all critical 
issues raised in the first round of reviews. The following are minor questions / corrections that the 
authors may consider:  
 
(i) p.17: The statement '... which produces the non-linearity necessary for a time delay...' may not be 
clear to the target audience - perhaps a short explanation is warranted.  
 
(ii) p.17: 'Such ambiguities are picked up by INDRA ...' - strictly speaking, INDRA does not flag 
ambiguities but it may be helpful in identifying them.  
 
(iii) p.20: 'assembled into 28 PySB rules and 99 differential equations;' - at this point, it may be good 
to explain the pertinent aspect of combinatorial expansion (e.g., which species are responsible, ...).  
 
(iv) p.20: 'amount of active RAS depends only on the amount [of] EGF'  
 
(v) p.22, second para: In discussing assembly policies, I suggest adding statements on the what the 
scope of individual policies is (application to Statements individually), and how consistency across a 
model could be ensured (e.g., avoiding cases in which the same enzyme acting on different 
substrates is captured differently, with potential consequences such as biased / incorrect mass 
balances).  
 
(vi) p.30: '(i) issues relating to the reading [of] natural language by external NLP systems'  
 
(vii) Fig. 7: Caption for panel (D) appears to be missing. 
 
Reviewer #3:  
 
The authors have provided a careful exegesis and response to my comments. I have no further 
criticisms. This study represents a valuable contribution to the field of computational model 
assembly.  
 
 
Reviewer #4:  
 
The authors have done a good job responding to the points raised by us and the other reviewers and 
greatly improved the manuscript as a result.  
My only remaining concern is with "GC5: Accessibility of the approach to non-experts." The 
authors agree in response to multiple reviewers that they have not shown that the approach presented 
here improves "accessibility", and I agree that it is difficult and unwise to try and do so. I believe 
INDRA is not necessarily more accessible than alternative approaches, but it has other 
distinguishing advantages as described in the text (enabling collaboration while maintaining 
rigorous and transparent translation from natural language into mechanism and forming part of a 
future pipeline from literature to model). Accessibility is not emphasized in the text but does appear 
in the abstract. The authors state that their approach "increases the accessibility and transparency of 
models for the broader biology community." I believe this sets an expectation for a software solution 
that overcomes some of the hurdles facing the broader biological community in constructing 
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mathematical models rather than exposing such ambiguities and difficulties to ensure robust and 
accurate collaboration. All reviewers and readers will have expectations better set for the important 
work contained in the paper if the word accessibility is removed from the abstract. Consider: 
"increases the transparency of models for collaboration with the broader biology community."  
If that is addressed I recommend publication. 
 
 
2nd Revision - authors' response 27 October 2017 

 
 
 
 
 
 
 



 

 

Response to reviewers 
 
Reviewer 1: 
 
The revision by Gyori and colleagues is very thorough and commendable, addressing all critical 
issues raised in the first round of reviews. The following are minor questions / corrections that the 
authors may consider: 
 
(i) p.17: The statement '... which produces the non-linearity necessary for a time delay...' may not 
be clear to the target audience - perhaps a short explanation is warranted. 
 
We added an explanation, and the corresponding section on page 17 now reads:  
 

“ATM trans-phosphorylation represents a form of positive feedback since the flux through 
the phosphorylation reaction increases with the concentration of the reaction product, 
namely, phosphorylated ATM. As described in detail by Novák and Tyson, positive feedback 
in such reaction mechanisms can create the “dynamical hysteresis” necessary for a time 
delay (Novák & Tyson, 2008)” 

 
(ii) p.17: 'Such ambiguities are picked up by INDRA ...' - strictly speaking, INDRA does not flag 
ambiguities but it may be helpful in identifying them. 
 
We modified the corresponding sentence to read: “Such ambiguities are propagated by INDRA and 
can be identified by the user at multiple (intermediate) stages of the extraction and assembly 
process” 
 
(iii) p.20: 'assembled into 28 PySB rules and 99 differential equations;' - at this point, it may be 
good to explain the pertinent aspect of combinatorial expansion (e.g., which species are 
responsible, ...). 
 
We have added an additional sentence to this paragraph to note that “65 of the 99 species in the 
model involve complexes assembling around EGFR, which are generated by the biochemical 
reactions described in the sentences that constitute the word model.” 
 
(iv) p.20: 'amount of active RAS depends only on the amount [of] EGF'  
 
We fixed the phrase to read “amount of active RAS depends only on the amount of EGF” on page 
20. 
 
(v) p.22, second para: In discussing assembly policies, I suggest adding statements on the what 
the scope of individual policies is (application to Statements individually), and how consistency 
across a model could be ensured (e.g., avoiding cases in which the same enzyme acting on 
different substrates is captured differently, with potential consequences such as biased / incorrect 
mass balances). 
 
We agree with the reviewer’s point and chose the last paragraph of page 14 as the most 
appropriate place to discuss this issue. The end of the paragraph has been extended with:  

 
“Assembly policies can be applied globally to the model or to specific Statement types (e.g., 
a one-step policy for IncreaseAmount Statements vs. a two-step policy for Phosphorylation 
Statements). In the current implementation of INDRA, policies cannot be applied to 
individual Statements; this extension is feasible but would require that the user maintain 
consistency among Statements involving the same reactants.”  

 
(vi) p.30: '(i) issues relating to the reading [of] natural language by external NLP systems' 



 

 

 
We fixed the phrase to read “issues relating to the reading of natural language” on page 30. 
 
(vii) Fig. 7: Caption for panel (D) appears to be missing. 
 
We added a caption for Figure 7 (D) as follows: 
 

“(D) Simulation results of Boolean models assembled from natural language under different 
inhibitor conditions. The “Basic model” contains the links shown in Figure 7A; the “Extended 
model” contains the extensions shown in Figure 7C. Each trace represents the activity of 
JUN in the presence of growth factors averaged over 100 stochastic simulations (see 
Methods).” 

 
Reviewer 4: 
 
The authors have done a good job responding to the points raised by us and the other reviewers 
and greatly improved the manuscript as a result.  
 
My only remaining concern is with "GC5: Accessibility of the approach to non-experts." The authors 
agree in response to multiple reviewers that they have not shown that the approach presented 
here improves "accessibility", and I agree that it is difficult and unwise to try and do so. I believe 
INDRA is not necessarily more accessible than alternative approaches, but it has other 
distinguishing advantages as described in the text (enabling collaboration while maintaining 
rigorous and transparent translation from natural language into mechanism and forming part of a 
future pipeline from literature to model). Accessibility is not emphasized in the text but does 
appear in the abstract. The authors state that their approach "increases the accessibility and 
transparency of models for the broader biology community." I believe this sets an expectation for a 
software solution that overcomes some of the hurdles facing the broader biological community in 
constructing mathematical models rather than exposing such ambiguities and difficulties to ensure 
robust and accurate collaboration. All reviewers and readers will have expectations better set for 
the important work contained in the paper if the word accessibility is removed from the abstract. 
Consider: "increases the transparency of models for collaboration with the broader biology 
community."  
If that is addressed I recommend publication. 
 
Following the suggestion by Reviewer 4, we have removed “accessible” from the abstract, and 
revised the sentence in question to read: “The use of natural language makes the task of 
developing a model more efficient and it increases model transparency, thereby promoting 
collaboration with the broader biology community.” 
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  are	
  altered/varied/perturbed	
  in	
  a	
  controlled	
  manner.

the	
  exact	
  sample	
  size	
  (n)	
  for	
  each	
  experimental	
  group/condition,	
  given	
  as	
  a	
  number,	
  not	
  a	
  range;
a	
  description	
  of	
  the	
  sample	
  collection	
  allowing	
  the	
  reader	
  to	
  understand	
  whether	
  the	
  samples	
  represent	
  technical	
  or	
  
biological	
  replicates	
  (including	
  how	
  many	
  animals,	
  litters,	
  cultures,	
  etc.).

1.	
  Data

the	
  data	
  were	
  obtained	
  and	
  processed	
  according	
  to	
  the	
  field’s	
  best	
  practice	
  and	
  are	
  presented	
  to	
  reflect	
  the	
  results	
  of	
  the	
  
experiments	
  in	
  an	
  accurate	
  and	
  unbiased	
  manner.
figure	
  panels	
  include	
  only	
  data	
  points,	
  measurements	
  or	
  observations	
  that	
  can	
  be	
  compared	
  to	
  each	
  other	
  in	
  a	
  scientifically	
  
meaningful	
  way.
graphs	
  include	
  clearly	
  labeled	
  error	
  bars	
  for	
  independent	
  experiments	
  and	
  sample	
  sizes.	
  Unless	
  justified,	
  error	
  bars	
  should	
  
not	
  be	
  shown	
  for	
  technical	
  replicates.
if	
  n<	
  5,	
  the	
  individual	
  data	
  points	
  from	
  each	
  experiment	
  should	
  be	
  plotted	
  and	
  any	
  statistical	
  test	
  employed	
  should	
  be	
  
justified

YOU	
  MUST	
  COMPLETE	
  ALL	
  CELLS	
  WITH	
  A	
  PINK	
  BACKGROUND	
  ê
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NA

NA

definitions	
  of	
  statistical	
  methods	
  and	
  measures:
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C-­‐	
  Reagents

NA

NA

NA

NA



6.	
  To	
  show	
  that	
  antibodies	
  were	
  profiled	
  for	
  use	
  in	
  the	
  system	
  under	
  study	
  (assay	
  and	
  species),	
  provide	
  a	
  citation,	
  catalog	
  
number	
  and/or	
  clone	
  number,	
  supplementary	
  information	
  or	
  reference	
  to	
  an	
  antibody	
  validation	
  profile.	
  e.g.,	
  
Antibodypedia	
  (see	
  link	
  list	
  at	
  top	
  right),	
  1DegreeBio	
  (see	
  link	
  list	
  at	
  top	
  right).

7.	
  Identify	
  the	
  source	
  of	
  cell	
  lines	
  and	
  report	
  if	
  they	
  were	
  recently	
  authenticated	
  (e.g.,	
  by	
  STR	
  profiling)	
  and	
  tested	
  for	
  
mycoplasma	
  contamination.

*	
  for	
  all	
  hyperlinks,	
  please	
  see	
  the	
  table	
  at	
  the	
  top	
  right	
  of	
  the	
  document

8.	
  Report	
  species,	
  strain,	
  gender,	
  age	
  of	
  animals	
  and	
  genetic	
  modification	
  status	
  where	
  applicable.	
  Please	
  detail	
  housing	
  
and	
  husbandry	
  conditions	
  and	
  the	
  source	
  of	
  animals.

9.	
  For	
  experiments	
  involving	
  live	
  vertebrates,	
  include	
  a	
  statement	
  of	
  compliance	
  with	
  ethical	
  regulations	
  and	
  identify	
  the	
  
committee(s)	
  approving	
  the	
  experiments.

10.	
  We	
  recommend	
  consulting	
  the	
  ARRIVE	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  (PLoS	
  Biol.	
  8(6),	
  e1000412,	
  2010)	
  to	
  ensure	
  
that	
  other	
  relevant	
  aspects	
  of	
  animal	
  studies	
  are	
  adequately	
  reported.	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  
Guidelines’.	
  See	
  also:	
  NIH	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  MRC	
  (see	
  link	
  list	
  at	
  top	
  right)	
  recommendations.	
  	
  Please	
  confirm	
  
compliance.

11.	
  Identify	
  the	
  committee(s)	
  approving	
  the	
  study	
  protocol.

12.	
  Include	
  a	
  statement	
  confirming	
  that	
  informed	
  consent	
  was	
  obtained	
  from	
  all	
  subjects	
  and	
  that	
  the	
  experiments	
  
conformed	
  to	
  the	
  principles	
  set	
  out	
  in	
  the	
  WMA	
  Declaration	
  of	
  Helsinki	
  and	
  the	
  Department	
  of	
  Health	
  and	
  Human	
  
Services	
  Belmont	
  Report.

13.	
  For	
  publication	
  of	
  patient	
  photos,	
  include	
  a	
  statement	
  confirming	
  that	
  consent	
  to	
  publish	
  was	
  obtained.

14.	
  Report	
  any	
  restrictions	
  on	
  the	
  availability	
  (and/or	
  on	
  the	
  use)	
  of	
  human	
  data	
  or	
  samples.

15.	
  Report	
  the	
  clinical	
  trial	
  registration	
  number	
  (at	
  ClinicalTrials.gov	
  or	
  equivalent),	
  where	
  applicable.

16.	
  For	
  phase	
  II	
  and	
  III	
  randomized	
  controlled	
  trials,	
  please	
  refer	
  to	
  the	
  CONSORT	
  flow	
  diagram	
  (see	
  link	
  list	
  at	
  top	
  right)	
  
and	
  submit	
  the	
  CONSORT	
  checklist	
  (see	
  link	
  list	
  at	
  top	
  right)	
  with	
  your	
  submission.	
  See	
  author	
  guidelines,	
  under	
  
‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  submitted	
  this	
  list.

17.	
  For	
  tumor	
  marker	
  prognostic	
  studies,	
  we	
  recommend	
  that	
  you	
  follow	
  the	
  REMARK	
  reporting	
  guidelines	
  (see	
  link	
  list	
  at	
  
top	
  right).	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  followed	
  these	
  guidelines.

18.	
  Provide	
  accession	
  codes	
  for	
  deposited	
  data.	
  See	
  author	
  guidelines,	
  under	
  ‘Data	
  Deposition’.

Data	
  deposition	
  in	
  a	
  public	
  repository	
  is	
  mandatory	
  for:
a.	
  Protein,	
  DNA	
  and	
  RNA	
  sequences
b.	
  Macromolecular	
  structures
c.	
  Crystallographic	
  data	
  for	
  small	
  molecules
d.	
  Functional	
  genomics	
  data	
  
e.	
  Proteomics	
  and	
  molecular	
  interactions

19.	
  Deposition	
  is	
  strongly	
  recommended	
  for	
  any	
  datasets	
  that	
  are	
  central	
  and	
  integral	
  to	
  the	
  study;	
  please	
  consider	
  the	
  
journal’s	
  data	
  policy.	
  If	
  no	
  structured	
  public	
  repository	
  exists	
  for	
  a	
  given	
  data	
  type,	
  we	
  encourage	
  the	
  provision	
  of	
  
datasets	
  in	
  the	
  manuscript	
  as	
  a	
  Supplementary	
  Document	
  (see	
  author	
  guidelines	
  under	
  ‘Expanded	
  View’	
  or	
  in	
  
unstructured	
  repositories	
  such	
  as	
  Dryad	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  Figshare	
  (see	
  link	
  list	
  at	
  top	
  right).
20.	
  Access	
  to	
  human	
  clinical	
  and	
  genomic	
  datasets	
  should	
  be	
  provided	
  with	
  as	
  few	
  restrictions	
  as	
  possible	
  while	
  
respecting	
  ethical	
  obligations	
  to	
  the	
  patients	
  and	
  relevant	
  medical	
  and	
  legal	
  issues.	
  If	
  practically	
  possible	
  and	
  compatible	
  
with	
  the	
  individual	
  consent	
  agreement	
  used	
  in	
  the	
  study,	
  such	
  data	
  should	
  be	
  deposited	
  in	
  one	
  of	
  the	
  major	
  public	
  access-­‐
controlled	
  repositories	
  such	
  as	
  dbGAP	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  EGA	
  (see	
  link	
  list	
  at	
  top	
  right).
21.	
  As	
  far	
  as	
  possible,	
  primary	
  and	
  referenced	
  data	
  should	
  be	
  formally	
  cited	
  in	
  a	
  Data	
  Availability	
  section.	
  Please	
  state	
  
whether	
  you	
  have	
  included	
  this	
  section.

Examples:
Primary	
  Data
Wetmore	
  KM,	
  Deutschbauer	
  AM,	
  Price	
  MN,	
  Arkin	
  AP	
  (2012).	
  Comparison	
  of	
  gene	
  expression	
  and	
  mutant	
  fitness	
  in	
  
Shewanella	
  oneidensis	
  MR-­‐1.	
  Gene	
  Expression	
  Omnibus	
  GSE39462
Referenced	
  Data
Huang	
  J,	
  Brown	
  AF,	
  Lei	
  M	
  (2012).	
  Crystal	
  structure	
  of	
  the	
  TRBD	
  domain	
  of	
  TERT	
  and	
  the	
  CR4/5	
  of	
  TR.	
  Protein	
  Data	
  Bank	
  
4O26
AP-­‐MS	
  analysis	
  of	
  human	
  histone	
  deacetylase	
  interactions	
  in	
  CEM-­‐T	
  cells	
  (2013).	
  PRIDE	
  PXD000208

22.	
  Computational	
  models	
  that	
  are	
  central	
  and	
  integral	
  to	
  a	
  study	
  should	
  be	
  shared	
  without	
  restrictions	
  and	
  provided	
  in	
  a	
  
machine-­‐readable	
  form.	
  	
  The	
  relevant	
  accession	
  numbers	
  or	
  links	
  should	
  be	
  provided.	
  When	
  possible,	
  standardized	
  
format	
  (SBML,	
  CellML)	
  should	
  be	
  used	
  instead	
  of	
  scripts	
  (e.g.	
  MATLAB).	
  Authors	
  are	
  strongly	
  encouraged	
  to	
  follow	
  the	
  
MIRIAM	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  deposit	
  their	
  model	
  in	
  a	
  public	
  database	
  such	
  as	
  Biomodels	
  (see	
  link	
  list	
  
at	
  top	
  right)	
  or	
  JWS	
  Online	
  (see	
  link	
  list	
  at	
  top	
  right).	
  If	
  computer	
  source	
  code	
  is	
  provided	
  with	
  the	
  paper,	
  it	
  should	
  be	
  
deposited	
  in	
  a	
  public	
  repository	
  or	
  included	
  in	
  supplementary	
  information.

23.	
  Could	
  your	
  study	
  fall	
  under	
  dual	
  use	
  research	
  restrictions?	
  Please	
  check	
  biosecurity	
  documents	
  (see	
  link	
  list	
  at	
  top	
  
right)	
  and	
  list	
  of	
  select	
  agents	
  and	
  toxins	
  (APHIS/CDC)	
  (see	
  link	
  list	
  at	
  top	
  right).	
  According	
  to	
  our	
  biosecurity	
  guidelines,	
  
provide	
  a	
  statement	
  only	
  if	
  it	
  could.

F-­‐	
  Data	
  Accessibility

G-­‐	
  Dual	
  use	
  research	
  of	
  concern

D-­‐	
  Animal	
  Models

E-­‐	
  Human	
  Subjects

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

The	
  source	
  code	
  and	
  documentation	
  for	
  INDRA	
  is	
  available	
  via	
  http://indra.bio;	
  the	
  documentation	
  
is	
  also	
  included	
  as	
  part	
  of	
  the	
  Appendix.	
  
The	
  TRIPS/DRUM	
  system	
  is	
  available	
  at	
  http://trips.ihmc.us/parser/cgi/drum.	
  
The	
  POMI1.0	
  and	
  MEMI1.0-­‐1.2	
  models	
  are	
  provided	
  as	
  Model	
  Files	
  EV1	
  in	
  SBML,	
  BNGL,	
  Kappa	
  and	
  
PySB	
  formats,	
  in	
  addition	
  to	
  the	
  natural	
  language	
  text	
  files	
  used	
  to	
  build	
  them.	
  
The	
  RAS	
  pathway	
  model	
  and	
  its	
  extension	
  are	
  provided	
  in	
  SIF	
  and	
  Boolean	
  network	
  formats	
  as	
  
Appendix	
  attachments.	
  
Code	
  used	
  to	
  generate	
  these	
  models	
  is	
  part	
  of	
  the	
  INDRA	
  repository	
  and	
  can	
  be	
  found	
  in	
  the	
  
models	
  folder	
  of	
  https://github.com/sorgerlab/indra.
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